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Preface 1

Welcome to College Physics for AP® Courses, an OpenStax resource. This textbook was written to increase student access to
high-quality learning materials, maintaining highest standards of academic rigor at little to no cost.

About OpenStax

OpenStax is a nonprofit based at Rice University, and it's our mission to improve student access to education. Our first openly

licensed college textbook was published in 2012, and our library has since scaled to over 25 books for college and AP® courses
used by hundreds of thousands of students. Our adaptive learning technology, designed to improve learning outcomes through
personalized educational paths, is being piloted in college courses throughout the country. Through our partnerships with
philanthropic foundations and our alliance with other educational resource organizations, OpenStax is breaking down the most
common barriers to learning and empowering students and instructors to succeed.

About OpenStax Resources
Customization

College Physics for AI_-"®_Courses is licensed under a Creative Commons Attribution 4.0 International (CC BY) license, which
means that you can distribute, remix, and build upon the content, as long as you provide attribution to OpenStax and its content

contributors.

Because our books are openly licensed, you are free to use the entire book or pick and choose the sections that are most
relevant to the needs of your course. Feel free to remix the content by assigning your students certain chapters and sections in
your syllabus, in the order that you prefer. You can even provide a direct link in your syllabus to the sections in the web view of
your book.

Instructors also have the option of creating a customized version of their OpenStax book through the OpenStax Custom platform.
The custom version can be made available to students in low-cost print or digital form through their campus bookstore. Visit your
book page on openstax.org for a link to your book on OpenStax Custom.

Errata

All OpenStax textbooks undergo a rigorous review process. However, like any professional-grade textbook, errors sometimes
occur. Since our books are web based, we can make updates periodically when deemed pedagogically necessary. If you have a
correction to suggest, submit it through the link on your book page on openstax.org. Subject matter experts review all errata
suggestions. OpenStax is committed to remaining transparent about all updates, so you will also find a list of past errata changes
on your book page on openstax.org.

Format
You can access this textbook for free in web view or PDF through openstax.org, and in low-cost print and iBooks editions.

About College Physics for AP® Courses

College Physics for AP® Courses is designed to engage students in their exploration of physics and help them apply these
concepts to the Advanced Placement® test. Because physics is integral to modern technology and other sciences, the book also
includes content that goes beyond the scope of the AP® course to further student understanding. The AP® Connection in each
chapter directs students to the material they should focus on for the AP® exam, and what content — although interesting — is
not necessarily part of the AP® curriculum. This book is Learning List-approved for AP® Physics courses.

Coverage, Scope, and Alignment to the AP® Curriculum

The current AP® Physics curriculum framework outlines the two full-year physics courses AP® Physics 1: Algebra-Based and
AP® Physics 2: Algebra-Based. These two courses replaced the one-year AP® Physics B course, which over the years had
become a fast-paced survey of physics facts and formulas that did not provide in-depth conceptual understanding of major
physics ideas and the connections between them.

AP® Physics 1 and 2 courses focus on the big ideas typically included in the first and second semesters of an algebra-based,
introductory college-level physics course, providing students with the essential knowledge and skills required to support future

advanced course work in physics. The AP® Physics 1 curriculum includes mechanics, mechanical waves, sound, and

electrostatics. The AP® Physics 2 curriculum focuses on thermodynamics, fluid statics, dynamics, electromagnetism, geometric
and physical optics, quantum physics, atomic physics, and nuclear physics. Seven unifying themes of physics called the Big

Ideas each include three to seven enduring understandings (EU), which are themselves composed of essential knowledge (EK)
that provides details and context for students as they explore physics.

AP® science practices emphasize inquiry-based learning and development of critical thinking and reasoning skills. Inquiry usually
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uses a series of steps to gain new knowledge, beginning with an observation and following with a hypothesis to explain the
observation; then experiments are conducted to test the hypothesis, gather results, and draw conclusions from data. The AP®
framework has identified seven major science practices, which can be described by short phrases: using representations and
models to communicate information and solve problems; using mathematics appropriately; engaging in questioning; planning
and implementing data collection strategies; analyzing and evaluating data; justifying scientific explanations; and connecting
concepts. The framework’s Learning Objectives merge content (EU and EK) with one or more of the seven science practices that

students should develop as they prepare for the AP® Physics exam.

College Physics for AP® Courses is based on the OpenStax College Physics text, adapted to focus on the AP curriculum's

concepts and practices. Each chapter of OpenStax College Physics for AP® Courses begins with a Connection for AP® Courses
introduction that explains how the content in the chapter sections align to the Big Ideas, enduring understandings, and essential

knowledge in the AP® framework. This textbook contains a wealth of information, and the Connection for AP® Courses sections

will help you distill the required AP® content from material that, although interesting, exceeds the scope of an introductory-level
course.

Each section opens with the program’s learning objectives as well as the AP® learning objectives and science practices
addressed. We have also developed Real World Connections features and Applying the Science Practices features that highlight
concepts, examples, and practices in the framework.

« 1 Introduction: The Nature of Science and Physics
* 2 Kinematics

¢ 3 Two-Dimensional Kinematics

* 4 Dynamics: Force and Newton's Laws of Motion

« 5 Further Applications of Newton's Laws: Friction, Drag, and Elasticity
¢ 6 Gravitation and Uniform Circular Motion

« 7 Work, Energy, and Energy Resources

¢ 8 Linear Momentum and Collisions

¢ 9 Statics and Torque

« 10 Rotational Motion and Angular Momentum

¢ 11 Fluid Statics

« 12 Fluid Dynamics and Its Biological and Medical Applications
¢ 13 Temperature, Kinetic Theory, and the Gas Laws
¢ 14 Heat and Heat Transfer Methods

¢ 15 Thermodynamics

¢ 16 Oscillatory Motion and Waves

« 17 Physics of Hearing

« 18 Electric Charge and Electric Field

* 19 Electric Potential and Electric Field

* 20 Electric Current, Resistance, and Ohm's Law

« 21 Circuits, Bioelectricity, and DC Instruments

¢ 22 Magnetism

« 23 Electromagnetic Induction, AC Circuits, and Electrical Technologies
« 24 Electromagnetic Waves

* 25 Geometric Optics

« 26 Vision and Optical Instruments

e 27 Wave Optics

« 28 Special Relativity

¢ 29 Introduction to Quantum Physics

« 30 Atomic Physics

¢ 31 Radioactivity and Nuclear Physics

* 32 Medical Applications of Nuclear Physics

¢ 33 Particle Physics

¢ 34 Frontiers of Physics

« Appendix A: Atomic Masses

* Appendix B: Selected Radioactive Isotopes

¢ Appendix C: Useful Information

* Appendix D: Glossary of Key Symbols and Notation

Pedagogical Foundation and Features

College Physics for AP® Courses is organized so that topics are introduced conceptually with a steady progression to precise
definitions and analytical applications. The analytical, problem-solving aspect is tied back to the conceptual before moving on to
another topic. Each introductory chapter, for example, opens with an engaging photograph relevant to the subject of the chapter
and interesting applications that are easy for most students to visualize.

+ Connections for AP® Courses introduce each chapter and explain how its content addresses the AP® curriculum.
« Worked Examples Examples start with problems based on real-life situations, then describe a strategy for solving the
problem that emphasizes key concepts. The subsequent detailed mathematical solution also includes a follow-up

This OpenStax book is available for free at http://cnx.org/content/col11844/1.14
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discussion.

« Problem-solving Strategies are presented independently and subsequently appear at crucial points in the text where
students can benefit most from them.

« Misconception Alerts address common misconceptions that students may bring to class.

« Take-Home Investigations provide the opportunity for students to apply or explore what they have learned with a hands-
on activity.

* Real World Connections highlight important concepts and examples in the AP® framework.

« Applying the Science Practices includes activities and challenging questions that engage students while they apply the

AP® science practices.

« Things Great and Small explains macroscopic phenomena (such as air pressure) with submicroscopic phenomena (such
as atoms bouncing off of walls).

« PhET Explorations link students to interactive PHeT physics simulations, developed by the University of Colorado, to help
them further explore the physics concepts they have learned about in their book module.

Assessment

College Physics for AP® Courses offers a wealth of assessment options, including the following end-of-module problems:

« Integrated Concept Problems challenge students to apply both conceptual knowledge and skills to solve a problem.

* Unreasonable Results encourage students to solve a problem and then evaluate why the premise or answer to the
problem are unrealistic.

« Construct Your Own Problem requires students to construct how to solve a particular problem, justify their starting
assumptions, show their steps to find the solution to the problem, and finally discuss the meaning of the result.

« Test Prep for AP® Courses includes assessment items with the format and rigor found in the AP® exam to help prepare
students for the exam.

AP Physics Collection

College Physics for AP® Courses is a part of the AP Physics Collection. The AP Physics Collection is a free, turnkey solution for
your AP® Physics course, brought to you through a collaboration between OpenStax and Rice Online Learning. The integrated

collection pairs the OpenStax College Physics for AP® Courses text with Concept Trailer videos, instructional videos, problem
solution videos, and a correlation guide to help you align all of your content. The instructional videos and problem solution videos

were developed by Rice Professor Jason Hafner and AP® Physics teachers Gigi Nevils-Noe and Matt Wilson through Rice
Online Learning. You can access all of this free material through the College Physics for AP® Courses page on openstax.org.

Additional Resources

Student and Instructor Resources

We've compiled additional resources for both students and instructors, including Getting Started Guides, an instructor solution
manual, and instructional videos. Instructor resources require a verified instructor account, which you can apply for when you log
in or create your account on openstax.org. Take advantage of these resources to supplement your OpenStax book.

Partner Resources

OpenStax Partners are our allies in the mission to make high-quality learning materials affordable and accessible to students and
instructors everywhere. Their tools integrate seamlessly with our OpenStax titles at a low cost. To access the partner resources
for your text, visit your book page on openstax.org.
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To the AP® Physics Student

The fundamental goal of physics is to discover and understand the “laws” that govern observed phenomena in the world around
us. Why study physics? If you plan to become a physicist, the answer is obvious—introductory physics provides the foundation
for your career; or if you want to become an engineer, physics provides the basis for the engineering principles used to solve
applied and practical problems. For example, after the discovery of the photoelectric effect by physicists, engineers developed
photocells that are used in solar panels to convert sunlight to electricity. What if you are an aspiring medical doctor? Although the
applications of the laws of physics may not be obvious, their understanding is tremendously valuable. Physics is involved in
medical diagnostics, such as x-rays, magnetic resonance imaging (MRI), and ultrasonic blood flow measurements. Medical
therapy sometimes directly involves physics; cancer radiotherapy uses ionizing radiation. What if you are planning a nonscience
career? Learning physics provides you with a well-rounded education and the ability to make important decisions, such as
evaluating the pros and cons of energy production sources or voting on decisions about nuclear waste disposal.

This AP® Physics 1 course begins with kinematics, the study of motion without considering its causes. Motion is everywhere:
from the vibration of atoms to the planetary revolutions around the Sun. Understanding motion is key to understanding other

concepts in physics. You will then study dynamics, which considers the forces that affect the motion of moving objects and
systems. Newton'’s laws of motion are the foundation of dynamics. These laws provide an example of the breadth and simplicity
of the principles under which nature functions. One of the most remarkable simplifications in physics is that only four distinct
forces account for all known phenomena. Your journey will continue as you learn about energy. Energy plays an essential role
both in everyday events and in scientific phenomena. You can likely name many forms of energy, from that provided by our
foods, to the energy we use to run our cars, to the sunlight that warms us on the beach. The next stop is learning about
oscillatory motion and waves. All oscillations involve force and energy: you push a child in a swing to get the motion started and
you put energy into a guitar string when you pluck it. Some oscillations create waves. For example, a guitar creates sound
waves. You will conclude this first physics course with the study of static electricity and electric currents. Many of the
characteristics of static electricity can be explored by rubbing things together. Rubbing creates the spark you get from walking
across a wool carpet, for example. Similarly, lightning results from air movements under certain weather conditions.

In the AP® Physics 2 course, you will continue your journey by studying fluid dynamics, which explains why rising smoke curls
and twists and how the body regulates blood flow. The next stop is thermodynamics, the study of heat transfer—energy in

transit—that can be used to do work. Basic physical laws govern how heat transfers and its efficiency. Then you will learn more
about electric phenomena as you delve into electromagnetism. An electric current produces a magnetic field; similarly, a
magnetic field produces a current. This phenomenon, known as magnetic induction, is essential to our technological society.
The generators in cars and nuclear plants use magnetism to generate a current. Other devices that use magnetism to induce
currents include pickup coils in electric guitars, transformers of every size, certain microphones, airport security gates, and
damping mechanisms on sensitive chemical balances. From electromagnetism you will continue your journey to optics, the
study of light. You already know that visible light is the type of electromagnetic waves to which our eyes respond. Through vision,
light can evoke deep emotions, such as when we view a magnificent sunset or glimpse a rainbow breaking through the clouds.
Optics is concerned with the generation and propagation of light. The quantum mechanics, atomic physics, and nuclear
physics are at the end of your journey. These areas of physics have been developed at the end of the 19th and early 20th
centuries and deal with submicroscopic objects. Because these objects are smaller than we can observe directly with our senses
and generally must be observed with the aid of instruments, parts of these physics areas may seem foreign and bizarre to you at
first. However, we have experimentally confirmed most of the ideas in these areas of physics.

AP® Physics is a challenging course. After all, you are taking physics at the introductory college level. You will discover that
some concepts are more difficult to understand than others; most students, for example, struggle to understand rotational motion

and angular momentum or particle-wave duality. The AP® curriculum promotes depth of understanding over breadth of content,
and to make your exploration of topics more manageable, concepts are organized around seven major themes called the Big

Ideas that apply to all levels of physical systems and interactions between them (see web diagram below). Each Big Idea
identifies enduring understandings (EU), essential knowledge (EK), and illustrative examples that support key concepts
and content. Simple descriptions define the focus of each Big Idea.

« Big Idea 1: Objects and systems have properties.

* Big Idea 2: Fields explain interactions.

« Big Idea 3: The interactions are described by forces.

* Big Idea 4: Interactions result in changes.

« Big Idea 5: Changes are constrained by conservation laws.

* Big Idea 6: Waves can transfer energy and momentum.

« Big Idea 7: The mathematics of probability can to describe the behavior of complex and quantum mechanical systems.

This OpenStax book is available for free at http://cnx.org/content/col11844/1.14
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Doing college work is not easy, but completion of AP®_cIasses is a reliable predictor of college success and prepares you for
subsequent courses. The more you engage in the subject, the easier your journey through the curriculum will be. Bring your

enthusiasm to class every day along with your notebook, pencil, and calculator. Prepare for class the day before, and review

concepts daily. Form a peer study group and ask your teacher for extra help if necessary. The AP® lab program focuses on more
open-ended, student-directed, and inquiry-based lab investigations designed to make you think, ask questions, and analyze data

like scientists. You will develop critical thinking and reasoning skills and apply different means of communicating information. By

the time you sit for the AP® exam in May, you will be fluent in the language of physics; because you have been doing real
science, you will be ready to show what you have learned. Along the way, you will find the study of the world around us to be one

of the most relevant and enjoyable experiences of your high school career.

Irina Lyublinskaya, PhD
Professor of Science Education

To the AP® Physics Teacher

The AP® curriculum was designed to allow instructors flexibility in their approach to teaching the physics courses. College
Physics for AP® Courses helps you orient students as they delve deeper into the world of physics. Each chapter includes a

Connection for AP® Courses introduction that describes the AP® Physics Big Ideas, enduring understandings, and essential
knowledge addressed in that chapter.

Each section starts with specific AP® learning objectives and includes essential concepts, illustrative examples, and science
practices, along with suggestions for applying the learning objectives through take-home experiments, virtual lab investigations,

and activities and questions for preparation and review. At the end of each section, students will find the Test Prep for AP®

courses with multiple-choice and open-response questions addressing AP® learning objectives to help them prepare for the AP®
exam.

College Physics for AP® Courses has been written to engage students in their exploration of physics and help them relate what
they learn in the classroom to their lives outside of it. Physics underlies much of what is happening today in other sciences and in

technology. Thus, the book content includes interesting facts and ideas that go beyond the scope of the AP® course. The AP®
Connection in each chapter directs students to the material they should focus on for the AP® exam, and what content—although
interesting—is not part of the AP® curriculum. Physics is a beautiful and fascinating science. It is in your hands to engage and

inspire your students to dive into an amazing world of physics, so they can enjoy it beyond just preparation for the AP® exam.

Irina Lyublinskaya, PhD
Professor of Science Education
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EUG.A
Traveling disturbance
EU6.B

Periodic wave

EU2.D.
Magnetic
field

EU2.B.
Gravitational

EULE. EU1.B.
Macroscopic Electric
properties Electric EUZ2.A.

Definition
of a field

Internal

Fields can be
used to explain
interactions

characteristics in
inertial frames of
reference

EUG.F. Wave
or particle
model for

electromagnetic

waves

Standing
waves and
beats

EU3.G.
Fundamental
forces

EU1.D.
Limitations

of classical
echanic:

EU6.G.
Wave or particle
model for
matter

EU3.D.
Impulse and
momentum

kinetic energy

BIS.
Changes
due to
interactions are

EU4.B.
Change in
total linear

EUS.D.
Linear
momentu

can result in
changes
in those
systems

EUS.B.
Energy of

mathematics
of probability
can be used to
describe complex
and quantum

quantities are
conserved

EU4.E.

Change in Change in mechanical
electric and angular systems
magnetic momentum Nuclear
propertie: number

The concept map showing major links between Big Ideas and Enduring Understandings is provided below for visual reference.
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1

Figure 1.1 Galaxies are as immense as atoms are small. Yet the same laws of physics describe both, and all the rest of nature—an indication of the
underlying unity in the universe. The laws of physics are surprisingly few in number, implying an underlying simplicity to nature's apparent complexity.
(credit: NASA, JPL-Caltech, P. Barmby, Harvard-Smithsonian Center for Astrophysics)

Chapter Outline

1.1. Physics: An Introduction

1.2. Physical Quantities and Units
1.3. Accuracy, Precision, and Significant Figures
1.4. Approximation

Connection for AP® Courses

What is your first reaction when you hear the word “physics”? Did you imagine working through difficult equations or memorizing
formulas that seem to have no real use in life outside the physics classroom? Many people come to the subject of physics with a
bit of fear. But as you begin your exploration of this broad-ranging subject, you may soon come to realize that physics plays a
much larger role in your life than you first thought, no matter your life goals or career choice.

For example, take a look at the image above. This image is of the Andromeda Galaxy, which contains billions of individual stars,
huge clouds of gas, and dust. Two smaller galaxies are also visible as bright blue spots in the background. At a staggering 2.5
million light years from Earth, this galaxy is the nearest one to our own galaxy (which is called the Milky Way). The stars and
planets that make up Andromeda might seem to be the furthest thing from most people's regular, everyday lives. But Andromeda
is a great starting point to think about the forces that hold together the universe. The forces that cause Andromeda to act as it
does are the same forces we contend with here on Earth, whether we are planning to send a rocket into space or simply raise
the walls for a new home. The same gravity that causes the stars of Andromeda to rotate and revolve also causes water to flow
over hydroelectric dams here on Earth. Tonight, take a moment to look up at the stars. The forces out there are the same as the
ones here on Earth. Through a study of physics, you may gain a greater understanding of the interconnectedness of everything
we can see and know in this universe.

Think now about all of the technological devices that you use on a regular basis. Computers, smart phones, GPS systems, MP3
players, and satellite radio might come to mind. Next, think about the most exciting modern technologies that you have heard
about in the news, such as trains that levitate above tracks, “invisibility cloaks” that bend light around them, and microscopic
robots that fight cancer cells in our bodies. All of these groundbreaking advancements, commonplace or unbelievable, rely on the
principles of physics. Aside from playing a significant role in technology, professionals such as engineers, pilots, physicians,
physical therapists, electricians, and computer programmers apply physics concepts in their daily work. For example, a pilot must
understand how wind forces affect a flight path and a physical therapist must understand how the muscles in the body
experience forces as they move and bend. As you will learn in this text, physics principles are propelling new, exciting
technologies, and these principles are applied in a wide range of careers.

In this text, you will begin to explore the history of the formal study of physics, beginning with natural philosophy and the ancient
Greeks, and leading up through a review of Sir Isaac Newton and the laws of physics that bear his name. You will also be
introduced to the standards scientists use when they study physical quantities and the interrelated system of measurements
most of the scientific community uses to communicate in a single mathematical language. Finally, you will study the limits of our
ability to be accurate and precise, and the reasons scientists go to painstaking lengths to be as clear as possible regarding their
own limitations.
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Chapter 1 introduces many fundamental skills and understandings needed for success with the AP® Learning Objectives. While
this chapter does not directly address any Big Ideas, its content will allow for a more meaningful understanding when these Big
Ideas are addressed in future chapters. For instance, the discussion of models, theories, and laws will assist you in
understanding the concept of fields as addressed in Big Idea 2, and the section titled ‘The Evolution of Natural Philosophy into
Modern Physics' will help prepare you for the statistical topics addressed in Big Idea 7.

This chapter will also prepare you to understand the Science Practices. In explicitly addressing the role of models in representing
and communicating scientific phenomena, Section 1.1 supports Science Practice 1. Additionally, anecdotes about historical
investigations and the inset on the scientific method will help you to engage in the scientific questioning referenced in Science
Practice 3. The appropriate use of mathematics, as called for in Science Practice 2, is a major focus throughout sections 1.2, 1.3,
and 1.4.

1.1 Physics: An Introduction

Figure 1.2 The flight formations of migratory birds such as Canada geese are governed by the laws of physics. (credit: David Merrett)

Learning Objectives

By the end of this section, you will be able to:

« Explain the difference between a principle and a law.
* Explain the difference between a model and a theory.

The physical universe is enormously complex in its detail. Every day, each of us observes a great variety of objects and
phenomena. Over the centuries, the curiosity of the human race has led us collectively to explore and catalog a tremendous
wealth of information. From the flight of birds to the colors of flowers, from lightning to gravity, from quarks to clusters of galaxies,
from the flow of time to the mystery of the creation of the universe, we have asked questions and assembled huge arrays of
facts. In the face of all these details, we have discovered that a surprisingly small and unified set of physical laws can explain
what we observe. As humans, we make generalizations and seek order. We have found that nature is remarkably cooperative—it
exhibits the underlying order and simplicity we so value.

It is the underlying order of nature that makes science in general, and physics in particular, so enjoyable to study. For example,
what do a bag of chips and a car battery have in common? Both contain energy that can be converted to other forms. The law of
conservation of energy (which says that energy can change form but is never lost) ties together such topics as food calories,
batteries, heat, light, and watch springs. Understanding this law makes it easier to learn about the various forms energy takes
and how they relate to one another. Apparently unrelated topics are connected through broadly applicable physical laws,
permitting an understanding beyond just the memorization of lists of facts.

The unifying aspect of physical laws and the basic simplicity of nature form the underlying themes of this text. In learning to apply
these laws, you will, of course, study the most important topics in physics. More importantly, you will gain analytical abilities that
will enable you to apply these laws far beyond the scope of what can be included in a single book. These analytical skills will help
you to excel academically, and they will also help you to think critically in any professional career you choose to pursue. This
module discusses the realm of physics (to define what physics is), some applications of physics (to illustrate its relevance to
other disciplines), and more precisely what constitutes a physical law (to illuminate the importance of experimentation to theory).

Science and the Realm of Physics

Science consists of the theories and laws that are the general truths of nature as well as the body of knowledge they encompass.
Scientists are continually trying to expand this body of knowledge and to perfect the expression of the laws that describe it.
Physics is concerned with describing the interactions of energy, matter, space, and time, and it is especially interested in what
fundamental mechanisms underlie every phenomenon. The concern for describing the basic phenomena in nature essentially
defines the realm of physics.

Physics aims to describe the function of everything around us, from the movement of tiny charged particles to the motion of
people, cars, and spaceships. In fact, almost everything around you can be described quite accurately by the laws of physics.
Consider a smart phone (Figure 1.3). Physics describes how electricity interacts with the various circuits inside the device. This

This OpenStax book is available for free at http://cnx.org/content/col11844/1.14
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knowledge helps engineers select the appropriate materials and circuit layout when building the smart phone. Next, consider a
GPS system. Physics describes the relationship between the speed of an object, the distance over which it travels, and the time
it takes to travel that distance. When you use a GPS device in a vehicle, it utilizes these physics equations to determine the
travel time from one location to another.

Figure 1.3 The Apple “iPhone” is a common smart phone with a GPS function. Physics describes the way that electricity flows through the circuits of
this device. Engineers use their knowledge of physics to construct an iPhone with features that consumers will enjoy. One specific feature of an iPhone
is the GPS function. GPS uses physics equations to determine the driving time between two locations on a map. (credit: @gletham GIS, Social, Mobile
Tech Images)

Applications of Physics

You need not be a scientist to use physics. On the contrary, knowledge of physics is useful in everyday situations as well as in
nonscientific professions. It can help you understand how microwave ovens work, why metals should not be put into them, and
why they might affect pacemakers. (See Figure 1.4 and Figure 1.5.) Physics allows you to understand the hazards of radiation
and rationally evaluate these hazards more easily. Physics also explains the reason why a black car radiator helps remove heat
in a car engine, and it explains why a white roof helps keep the inside of a house cool. Similarly, the operation of a car's ignition
system as well as the transmission of electrical signals through our body's nervous system are much easier to understand when
you think about them in terms of basic physics.

Physics is the foundation of many important disciplines and contributes directly to others. Chemistry, for example—since it deals
with the interactions of atoms and molecules—is rooted in atomic and molecular physics. Most branches of engineering are
applied physics. In architecture, physics is at the heart of structural stability, and is involved in the acoustics, heating, lighting,
and cooling of buildings. Parts of geology rely heavily on physics, such as radioactive dating of rocks, earthquake analysis, and
heat transfer in the Earth. Some disciplines, such as biophysics and geophysics, are hybrids of physics and other disciplines.

Physics has many applications in the biological sciences. On the microscopic level, it helps describe the properties of cell walls
and cell membranes (Figure 1.6 and Figure 1.7). On the macroscopic level, it can explain the heat, work, and power associated
with the human body. Physics is involved in medical diagnostics, such as x-rays, magnetic resonance imaging (MRI), and
ultrasonic blood flow measurements. Medical therapy sometimes directly involves physics; for example, cancer radiotherapy
uses ionizing radiation. Physics can also explain sensory phenomena, such as how musical instruments make sound, how the
eye detects color, and how lasers can transmit information.

It is not necessary to formally study all applications of physics. What is most useful is knowledge of the basic laws of physics and
a skill in the analytical methods for applying them. The study of physics also can improve your problem-solving skills.
Furthermore, physics has retained the most basic aspects of science, so it is used by all of the sciences, and the study of
physics makes other sciences easier to understand.

Figure 1.4 The laws of physics help us understand how common appliances work. For example, the laws of physics can help explain how microwave
ovens heat up food, and they also help us understand why it is dangerous to place metal objects in a microwave oven. (credit: MoneyBlogNewz)
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Figure 1.5 These two applications of physics have more in common than meets the eye. Microwave ovens use electromagnetic waves to heat food.
Magnetic resonance imaging (MRI) also uses electromagnetic waves to yield an image of the brain, from which the exact location of tumors can be
determined. (credit: Rashmi Chawla, Daniel Smith, and Paul E. Marik)

Figure 1.6 Physics, chemistry, and biology help describe the properties of cell walls in plant cells, such as the onion cells seen here. (credit: Umberto
Salvagnin)
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Figure 1.7 An artist's rendition of the the structure of a cell membrane. Membranes form the boundaries of animal cells and are complex in structure
and function. Many of the most fundamental properties of life, such as the firing of nerve cells, are related to membranes. The disciplines of biology,
chemistry, and physics all help us understand the membranes of animal cells. (credit: Mariana Ruiz)

Models, Theories, and Laws; The Role of Experimentation

The laws of nature are concise descriptions of the universe around us; they are human statements of the underlying laws or rules
that all natural processes follow. Such laws are intrinsic to the universe; humans did not create them and so cannot change
them. We can only discover and understand them. Their discovery is a very human endeavor, with all the elements of mystery,
imagination, struggle, triumph, and disappointment inherent in any creative effort. (See Figure 1.8 and Figure 1.9.) The

cornerstone of discovering natural laws is observation; science must describe the universe as it is, not as we may imagine it to
be.
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Sir Isaac Newton

Figure 1.8 Isaac Newton (1642—-1727) was very reluctant to publish his revolutionary work and had to be convinced to do so. In his later years, he
stepped down from his academic post and became exchequer of the Royal Mint. He took this post seriously, inventing reeding (or creating ridges) on
the edge of coins to prevent unscrupulous people from trimming the silver off of them before using them as currency. (credit: Arthur Shuster and Arthur
E. Shipley: Britain's Heritage of Science. London, 1917.)

Figure 1.9 Marie Curie (1867-1934) sacrificed monetary assets to help finance her early research and damaged her physical well-being with radiation
exposure. She is the only person to win Nobel prizes in both physics and chemistry. One of her daughters also won a Nobel Prize. (credit: Wikimedia
Commons)

We all are curious to some extent. We look around, make generalizations, and try to understand what we see—for example, we
look up and wonder whether one type of cloud signals an oncoming storm. As we become serious about exploring nature, we
become more organized and formal in collecting and analyzing data. We attempt greater precision, perform controlled
experiments (if we can), and write down ideas about how the data may be organized and unified. We then formulate models,
theories, and laws based on the data we have collected and analyzed to generalize and communicate the results of these
experiments.

A model is a representation of something that is often too difficult (or impossible) to display directly. While a model is justified
with experimental proof, it is only accurate under limited situations. An example is the planetary model of the atom in which
electrons are pictured as orbiting the nucleus, analogous to the way planets orbit the Sun. (See Figure 1.10.) We cannot observe
electron orbits directly, but the mental image helps explain the observations we can make, such as the emission of light from hot
gases (atomic spectra). Physicists use models for a variety of purposes. For example, models can help physicists analyze a
scenario and perform a calculation, or they can be used to represent a situation in the form of a computer simulation. A theory is
an explanation for patterns in nature that is supported by scientific evidence and verified multiple times by various groups of
researchers. Some theories include models to help visualize phenomena, whereas others do not. Newton's theory of gravity, for
example, does not require a model or mental image, because we can observe the objects directly with our own senses. The
kinetic theory of gases, on the other hand, is a model in which a gas is viewed as being composed of atoms and molecules.
Atoms and molecules are too small to be observed directly with our senses—thus, we picture them mentally to understand what
our instruments tell us about the behavior of gases.

A law uses concise language to describe a generalized pattern in nature that is supported by scientific evidence and repeated
experiments. Often, a law can be expressed in the form of a single mathematical equation. Laws and theories are similar in that
they are both scientific statements that result from a tested hypothesis and are supported by scientific evidence. However, the
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designation law is reserved for a concise and very general statement that describes phenomena in nature, such as the law that
energy is conserved during any process, or Newton's second law of motion, which relates force, mass, and acceleration by the
simple equation F = ma . A theory, in contrast, is a less concise statement of observed phenomena. For example, the Theory of

Evolution and the Theory of Relativity cannot be expressed concisely enough to be considered a law. The biggest difference
between a law and a theory is that a theory is much more complex and dynamic. A law describes a single action, whereas a
theory explains an entire group of related phenomena. And, whereas a law is a postulate that forms the foundation of the
scientific method, a theory is the end result of that process.

Less broadly applicable statements are usually called principles (such as Pascal's principle, which is applicable only in fluids),
but the distinction between laws and principles often is not carefully made.

Figure 1.10 What is a model? This planetary model of the atom shows electrons orbiting the nucleus. It is a drawing that we use to form a mental
image of the atom that we cannot see directly with our eyes because it is too small.

Models, Theories, and Laws

Models, theories, and laws are used to help scientists analyze the data they have already collected. However, often after a
model, theory, or law has been developed, it points scientists toward new discoveries they would not otherwise have made.

The models, theories, and laws we devise sometimes imply the existence of objects or phenomena as yet unobserved. These
predictions are remarkable triumphs and tributes to the power of science. It is the underlying order in the universe that enables
scientists to make such spectacular predictions. However, if experiment does not verify our predictions, then the theory or law is
wrong, no matter how elegant or convenient it is. Laws can never be known with absolute certainty because it is impossible to
perform every imaginable experiment in order to confirm a law in every possible scenario. Physicists operate under the
assumption that all scientific laws and theories are valid until a counterexample is observed. If a good-quality, verifiable
experiment contradicts a well-established law, then the law must be modified or overthrown completely.

The study of science in general and physics in particular is an adventure much like the exploration of uncharted ocean.
Discoveries are made; models, theories, and laws are formulated; and the beauty of the physical universe is made more sublime
for the insights gained.

The Scientific Method

As scientists inquire and gather information about the world, they follow a process called the scientific method. This
process typically begins with an observation and question that the scientist will research. Next, the scientist typically
performs some research about the topic and then devises a hypothesis. Then, the scientist will test the hypothesis by
performing an experiment. Finally, the scientist analyzes the results of the experiment and draws a conclusion. Note that the
scientific method can be applied to many situations that are not limited to science, and this method can be modified to suit
the situation.

Consider an example. Let us say that you try to turn on your car, but it will not start. You undoubtedly wonder: Why will the
car not start? You can follow a scientific method to answer this question. First off, you may perform some research to
determine a variety of reasons why the car will not start. Next, you will state a hypothesis. For example, you may believe that
the car is not starting because it has no engine oil. To test this, you open the hood of the car and examine the oil level. You
observe that the oil is at an acceptable level, and you thus conclude that the oil level is not contributing to your car issue. To
troubleshoot the issue further, you may devise a new hypothesis to test and then repeat the process again.

The Evolution of Natural Philosophy into Modern Physics

Physics was not always a separate and distinct discipline. It remains connected to other sciences to this day. The word physics
comes from Greek, meaning nature. The study of nature came to be called “natural philosophy.” From ancient times through the
Renaissance, natural philosophy encompassed many fields, including astronomy, biology, chemistry, physics, mathematics, and
medicine. Over the last few centuries, the growth of knowledge has resulted in ever-increasing specialization and branching of
natural philosophy into separate fields, with physics retaining the most basic facets. (See Figure 1.11, Figure 1.12, and Figure
1.13.) Physics as it developed from the Renaissance to the end of the 19th century is called classical physics. It was
transformed into modern physics by revolutionary discoveries made starting at the beginning of the 20th century.

This OpenStax book is available for free at http://cnx.org/content/col11844/1.14
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Figure 1.11 Over the centuries, natural philosophy has evolved into more specialized disciplines, as illustrated by the contributions of some of the
greatest minds in history. The Greek philosopher Aristotle (384-322 B.C.) wrote on a broad range of topics including physics, animals, the soul,
politics, and poetry. (credit: Jastrow (2006)/Ludovisi Collection)

Figure 1.12 Galileo Galilei (1564-1642) laid the foundation of modern experimentation and made contributions in mathematics, physics, and
astronomy. (credit: Domenico Tintoretto)

Figure 1.13 Niels Bohr (1885-1962) made fundamental contributions to the development of quantum mechanics, one part of modern physics. (credit:
United States Library of Congress Prints and Photographs Division)

Classical physics is not an exact description of the universe, but it is an excellent approximation under the following conditions:
Matter must be moving at speeds less than about 1% of the speed of light, the objects dealt with must be large enough to be
seen with a microscope, and only weak gravitational fields, such as the field generated by the Earth, can be involved. Because
humans live under such circumstances, classical physics seems intuitively reasonable, while many aspects of modern physics
seem bizarre. This is why models are so useful in modern physics—they let us conceptualize phenomena we do not ordinarily
experience. We can relate to models in human terms and visualize what happens when objects move at high speeds or imagine
what objects too small to observe with our senses might be like. For example, we can understand an atom's properties because
we can picture it in our minds, although we have never seen an atom with our eyes. New tools, of course, allow us to better



14 Chapter 1 | Introduction: The Nature of Science and Physics

picture phenomena we cannot see. In fact, new instrumentation has allowed us in recent years to actually “picture” the atom.

Limits on the Laws of Classical Physics

For the laws of classical physics to apply, the following criteria must be met: Matter must be moving at speeds less than
about 1% of the speed of light, the objects dealt with must be large enough to be seen with a microscope, and only weak
gravitational fields (such as the field generated by the Earth) can be involved.

Figure 1.14 Using a scanning tunneling microscope (STM), scientists can see the individual atoms that compose this sheet of gold. (credit:
Erwinrossen)

Some of the most spectacular advances in science have been made in modern physics. Many of the laws of classical physics
have been modified or rejected, and revolutionary changes in technology, society, and our view of the universe have resulted.
Like science fiction, modern physics is filled with fascinating objects beyond our normal experiences, but it has the advantage
over science fiction of being very real. Why, then, is the majority of this text devoted to topics of classical physics? There are two
main reasons: Classical physics gives an extremely accurate description of the universe under a wide range of everyday
circumstances, and knowledge of classical physics is necessary to understand modern physics.

Modern physics itself consists of the two revolutionary theories, relativity and quantum mechanics. These theories deal with the
very fast and the very small, respectively. Relativity must be used whenever an object is traveling at greater than about 1% of
the speed of light or experiences a strong gravitational field such as that near the Sun. Quantum mechanics must be used for
objects smaller than can be seen with a microscope. The combination of these two theories is relativistic quantum mechanics,
and it describes the behavior of small objects traveling at high speeds or experiencing a strong gravitational field. Relativistic
guantum mechanics is the best universally applicable theory we have. Because of its mathematical complexity, it is used only
when necessary, and the other theories are used whenever they will produce sufficiently accurate results. We will find, however,
that we can do a great deal of modern physics with the algebra and trigonometry used in this text.

A friend tells you he has learned about a new law of nature. What can you know about the information even before your
friend describes the law? How would the information be different if your friend told you he had learned about a scientific
theory rather than a law?

Solution

Without knowing the details of the law, you can still infer that the information your friend has learned conforms to the
requirements of all laws of nature: it will be a concise description of the universe around us; a statement of the underlying
rules that all natural processes follow. If the information had been a theory, you would be able to infer that the information will
be a large-scale, broadly applicable generalization.

PhET Explorations: Equation Grapher

Learn about graphing polynomials. The shape of the curve changes as the constants are adjusted. View the curves for the
individual terms (e.g. y = bx) to see how they add to generate the polynomial curve.

PhET Interactive Simulation

Figure 1.15 Equation Grapher (http://icnx.org/content/m54764/1.2/equation-grapher_en.jar)
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1.2 Physical Quantities and Units

Figure 1.16 The distance from Earth to the Moon may seem immense, but it is just a tiny fraction of the distances from Earth to other celestial bodies.
(credit: NASA)

Learning Objectives

By the end of this section, you will be able to:

» Perform unit conversions both in the SI and English units.
« Explain the most common prefixes in the S| units and be able to write them in scientific notation.

The range of objects and phenomena studied in physics is immense. From the incredibly short lifetime of a nucleus to the age of
Earth, from the tiny sizes of sub-nuclear particles to the vast distance to the edges of the known universe, from the force exerted
by a jumping flea to the force between Earth and the Sun, there are enough factors of 10 to challenge the imagination of even
the most experienced scientist. Giving numerical values for physical quantities and equations for physical principles allows us to
understand nature much more deeply than does qualitative description alone. To comprehend these vast ranges, we must also
have accepted units in which to express them. And we shall find that (even in the potentially mundane discussion of meters,
kilograms, and seconds) a profound simplicity of nature appears—all physical quantities can be expressed as combinations of
only four fundamental physical quantities: length, mass, time, and electric current.

We define a physical quantity either by specifying how it is measured or by stating how it is calculated from other
measurements. For example, we define distance and time by specifying methods for measuring them, whereas we define
average speed by stating that it is calculated as distance traveled divided by time of travel.

Measurements of physical quantities are expressed in terms of units, which are standardized values. For example, the length of
a race, which is a physical quantity, can be expressed in units of meters (for sprinters) or kilometers (for distance runners).
Without standardized units, it would be extremely difficult for scientists to express and compare measured values in a meaningful
way. (See Figure 1.17.)

| wonder
how big
a cable is?

Figure 1.17 Distances given in unknown units are maddeningly useless.

There are two major systems of units used in the world: Sl units (also known as the metric system) and English units (also
known as the customary or imperial system). English units were historically used in nations once ruled by the British Empire
and are still widely used in the United States. Virtually every other country in the world now uses Sl units as the standard; the
metric system is also the standard system agreed upon by scientists and mathematicians. The acronym “Sl” is derived from the
French Systeme International.
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Sl Units: Fundamental and Derived Units

Table 1.1 gives the fundamental Sl units that are used throughout this textbook. This text uses non-SlI units in a few applications
where they are in very common use, such as the measurement of blood pressure in millimeters of mercury (mm Hg). Whenever
non-Sl units are discussed, they will be tied to Sl units through conversions.

Table 1.1 Fundamental Sl Units

Length Mass Time Electric Charge

meter (m) |kilogram (kg) [ second (s) [ coulomb (c)

It is an intriguing fact that some physical quantities are more fundamental than others and that the most fundamental physical
guantities can be defined only in terms of the procedure used to measure them. The units in which they are measured are thus
called fundamental units. In this textbook, the fundamental physical quantities are taken to be length, mass, time, and electric
charge. (Note that electric current will not be introduced until much later in this text.) All other physical quantities, such as force
and electric current, can be expressed as algebraic combinations of length, mass, time, and current (for example, speed is length
divided by time); these units are called derived units.

Units of Time, Length, and Mass: The Second, Meter, and Kilogram
The Second

The Sl unit for time, the second(abbreviated s), has a long history. For many years it was defined as 1/86,400 of a mean solar
day. More recently, a new standard was adopted to gain greater accuracy and to define the second in terms of a non-varying, or
constant, physical phenomenon (because the solar day is getting longer due to very gradual slowing of the Earth's rotation).
Cesium atoms can be made to vibrate in a very steady way, and these vibrations can be readily observed and counted. In 1967
the second was redefined as the time required for 9,192,631,770 of these vibrations. (See Figure 1.18.) Accuracy in the
fundamental units is essential, because all measurements are ultimately expressed in terms of fundamental units and can be no
more accurate than are the fundamental units themselves.

- " -
Figure 1.18 An atomic clock such as this one uses the vibrations of cesium atoms to keep time to a precision of better than a microsecond per year.
The fundamental unit of time, the second, is based on such clocks. This image is looking down from the top of an atomic fountain nearly 30 feet tall!
(credit: Steve Jurvetson/Flickr)

The Meter

The Sl unit for length is the meter (abbreviated m); its definition has also changed over time to become more accurate and
precise. The meter was first defined in 1791 as 1/10,000,000 of the distance from the equator to the North Pole. This
measurement was improved in 1889 by redefining the meter to be the distance between two engraved lines on a platinum-iridium
bar now kept near Paris. By 1960, it had become possible to define the meter even more accurately in terms of the wavelength
of light, so it was again redefined as 1,650,763.73 wavelengths of orange light emitted by krypton atoms. In 1983, the meter was
given its present definition (partly for greater accuracy) as the distance light travels in a vacuum in 1/299,792,458 of a second.
(See Figure 1.19.) This change defines the speed of light to be exactly 299,792,458 meters per second. The length of the meter
will change if the speed of light is someday measured with greater accuracy.

The Kilogram

The Sl unit for mass is the kilogram (abbreviated kg); it is defined to be the mass of a platinum-iridium cylinder kept with the old
meter standard at the International Bureau of Weights and Measures near Paris. Exact replicas of the standard kilogram are also
kept at the United States' National Institute of Standards and Technology, or NIST, located in Gaithersburg, Maryland outside of
Washington D.C., and at other locations around the world. The determination of all other masses can be ultimately traced to a
comparison with the standard mass.
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Light travels a distance of 1 meter
in 1/299,792,458 seconds

Figure 1.19 The meter is defined to be the distance light travels in 1/299,792,458 of a second in a vacuum. Distance traveled is speed multiplied by
time.

Electric current and its accompanying unit, the ampere, will be introduced in Introduction to Electric Current, Resistance, and
Ohm's Law when electricity and magnetism are covered. The initial modules in this textbook are concerned with mechanics,
fluids, heat, and waves. In these subjects all pertinent physical quantities can be expressed in terms of the fundamental units of
length, mass, and time.

Metric Prefixes

Sl units are part of the metric system. The metric system is convenient for scientific and engineering calculations because the
units are categorized by factors of 10. Table 1.2 gives metric prefixes and symbols used to denote various factors of 10.

Metric systems have the advantage that conversions of units involve only powers of 10. There are 100 centimeters in a meter,
1000 meters in a kilometer, and so on. In nonmetric systems, such as the system of U.S. customary units, the relationships are
not as simple—there are 12 inches in a foot, 5280 feet in a mile, and so on. Another advantage of the metric system is that the
same unit can be used over extremely large ranges of values simply by using an appropriate metric prefix. For example,
distances in meters are suitable in construction, while distances in kilometers are appropriate for air travel, and the tiny measure
of nanometers are convenient in optical design. With the metric system there is no need to invent new units for particular
applications.

The term order of magnitude refers to the scale of a value expressed in the metric system. Each power of 10 in the metric

system represents a different order of magnitude. For example, 10! , 102, 103 , and so forth are all different orders of
magnitude. All quantities that can be expressed as a product of a specific power of 10 are said to be of the same order of

magnitude. For example, the number 800 can be written as 8% 102 , and the number 450 can be written as 4.5%102. Thus,
the numbers 800 and 450 are of the same order of magnitude: 102. Order of magnitude can be thought of as a ballpark

estimate for the scale of a value. The diameter of an atom is on the order of 10_9 m, while the diameter of the Sun is on the

order of 10° m.

The Quest for Microscopic Standards for Basic Units

The fundamental units described in this chapter are those that produce the greatest accuracy and precision in
measurement. There is a sense among physicists that, because there is an underlying microscopic substructure to matter, it
would be most satisfying to base our standards of measurement on microscopic objects and fundamental physical
phenomena such as the speed of light. A microscopic standard has been accomplished for the standard of time, which is
based on the oscillations of the cesium atom.

The standard for length was once based on the wavelength of light (a small-scale length) emitted by a certain type of atom,
but it has been supplanted by the more precise measurement of the speed of light. If it becomes possible to measure the
mass of atoms or a particular arrangement of atoms such as a silicon sphere to greater precision than the kilogram
standard, it may become possible to base mass measurements on the small scale. There are also possibilities that electrical
phenomena on the small scale may someday allow us to base a unit of charge on the charge of electrons and protons, but
at present current and charge are related to large-scale currents and forces between wires.
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Table 1.2 Metric Prefixes for Powers of 10 and their Symbols

Prefix Symbol Value Example (some are approximate)
exa E 1018 exameter |Em 1018 m |distance light travels in a century
peta P 1015 petasecond | Ps 1059 s 30 million years
tera T 1012 terawatt ™™ | 1012 W powerful laser output
giga G 109 gigahertz |GHz 109 Hz |a microwave frequency
mega M 106 megacurie |MCi 106 Ci high radioactivity
kilo k 103 kilometer [km [ 103> m  |about 6/10 mile
hecto h 102 hectoliter | hL 102 L 26 gallons
deka da 10! dekagram |dag 10! g teaspoon of butter
— — 10° (=)
deci d 107! deciliter  [dL | 1071 L |[less than half a soda
centi ® 1072 centimeter |[cm | 1072 m fingertip thickness
milli m 1073 millimeter |mm | 1073 m |flea at its shoulders
micro u 10‘6 micrometer | um 1()‘6 m [detail in microscope
nano n 1079 nanogram |ng 107° g |small speck of dust
pico p 10‘12 picofarad | pF 10‘12 F [small capacitor in radio
femto f 10‘15 femtometer [ fm 10‘15 m |size of a proton
atto a 10‘18 attosecond |as 10_18 s |time light crosses an atom

Known Ranges of Length, Mass, and Time

The vastness of the universe and the breadth over which physics applies are illustrated by the wide range of examples of known
lengths, masses, and times in Table 1.3. Examination of this table will give you some feeling for the range of possible topics and
numerical values. (See Figure 1.20 and Figure 1.21.)

Figure 1.20 Tiny phytoplankton swims among crystals of ice in the Antarctic Sea. They range from a few micrometers to as much as 2 millimeters in
length. (credit: Prof. Gordon T. Taylor, Stony Brook University; NOAA Corps Collections)

1. See Appendix A for a discussion of powers of 10.
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Figure 1.21 Galaxies collide 2.4 billion light years away from Earth. The tremendous range of observable phenomena in nature challenges the
imagination. (credit: NASA/CXC/UVic./A. Mahdavi et al. Optical/lensing: CFHT/UVic./H. Hoekstra et al.)

Unit Conversion and Dimensional Analysis

It is often necessary to convert from one type of unit to another. For example, if you are reading a European cookbook, some
guantities may be expressed in units of liters and you need to convert them to cups. Or, perhaps you are reading walking
directions from one location to another and you are interested in how many miles you will be walking. In this case, you will need
to convert units of feet to miles.

Let us consider a simple example of how to convert units. Let us say that we want to convert 80 meters (m) to kilometers (km).

The first thing to do is to list the units that you have and the units that you want to convert to. In this case, we have units in
meters and we want to convert to kilometers.

Next, we need to determine a conversion factor relating meters to kilometers. A conversion factor is a ratio expressing how
many of one unit are equal to another unit. For example, there are 12 inches in 1 foot, 100 centimeters in 1 meter, 60 seconds in
1 minute, and so on. In this case, we know that there are 1,000 meters in 1 kilometer.

Now we can set up our unit conversion. We will write the units that we have and then multiply them by the conversion factor so
that the units cancel out, as shown:

1km _ 1.1
80X 100057 0.080 km.

Note that the unwanted m unit cancels, leaving only the desired km unit. You can use this method to convert between any types
of unit.

Click Appendix C for a more complete list of conversion factors.
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Table 1.3 Approximate Values of Length, Mass, and Time
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. - Mass of an electron ) .
10-18 Present experimental limit to 10-30 31 10-23 Time for light to cross a
smallest observable detail (9-1 1x10 kg) proton
15 27 bbbl 22 [Mean life of an extremely
10 Diameter of a proton 10 (1.67)( o2 kg) 10 unstable nucleus
10‘14 Diameter of a uranium nucleus 10‘15 Mass of a bacterium 10‘15 T_|me fo_r a2 et €
visible light
—10 | - _5 . —13 | Time for one vibration of an
10 Diameter of a hydrogen atom 10 Mass of a mosquito 10 atom in a solid
—8 |Thickness of membranes in cells of =2 R —g8 |Time for one oscillation of an
10 living organisms 10 MEES 0TS A ol 10 FM radio wave
10_6 Wavelength of visible light 1 gﬂgisarcg e llier i vt (e 10~3 | Duration of a nerve impulse
10_3 Size of a grain of sand 102 Mass of a person 1 Time for one heartbeat
1 Height of a 4-year-old child 103 |Mass of a car 105  |One day (8-64>< 10* S)
102 |Length of a football field 108 |Mass of a large ship 107 |One year (y) (3.16x10” s)
4 12 . 9 About half the life
10 Greatest ocean depth 10 Mass of a large iceberg 10 expectancy of a human
107 Diameter of the Earth 1015 Mass of the nucleus of a comet| 101! |Recorded history
Mass of the Moon
10!! |Distance from the Earth to the Sun 1023 (7.35><1022 kg) 1017 Age of the Earth
. S Mass of the Earth
16 |Distance traveled by lightin 1 year 25 18 .
10 (a light year) 10 (5.97)( 1024 kg) 10 Age of the universe
. 30 Mass of the Sun
10 Diameter of the Milky Way galaxy 10 (1.99>< 1030 kg)
1 022 Distance from the Earth to the 1 042 Mass of the Milky Way galaxy
nearest large galaxy (Andromeda) (current upper limit)
1 026 Distance from the Earth to the 1 053 Mass of the known universe
edges of the known universe (current upper limit)

Example 1.1 Unit Conversions: A Short Drive Home

Suppose that you drive the 10.0 km from your university to home in 20.0 min. Calculate your average speed (a) in kilometers
per hour (km/h) and (b) in meters per second (m/s). (Note: Average speed is distance traveled divided by time of travel.)

Strategy

First we calculate the average speed using the given units. Then we can get the average speed into the desired units by
picking the correct conversion factor and multiplying by it. The correct conversion factor is the one that cancels the

unwanted unit and leaves the desired unit in its place.

Solution for (a)

(1) Calculate average speed. Average speed is distance traveled divided by time of travel. (Take this definition as a given for
now—average speed and other motion concepts will be covered in a later module.) In equation form,

average spee

(2) Substitute the given values for distance and time.

4 —distance
time
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10.0 km km (1.3)
average speed =5~~—— = 0.500—= .
£¢ 5P 20.0 min min
(3) Convert km/min to km/h: multiply by the conversion factor that will cancel minutes and leave hours. That conversion
factor is 60 min/hr . Thus,
average speed =0.500 rlilri?1x60 min _ 30 o.km, (2.4)

1h h

Discussion for (a)
To check your answer, consider the following:

(1) Be sure that you have properly cancelled the units in the unit conversion. If you have written the unit conversion factor
upside down, the units will not cancel properly in the equation. If you accidentally get the ratio upside down, then the units
will not cancel; rather, they will give you the wrong units as follows:

km,_1lhr _ 1 km-hr (1.5)

——X — 5 >
min~ 60 min 60 in2

which are obviously not the desired units of km/h.

(2) Check that the units of the final answer are the desired units. The problem asked us to solve for average speed in units
of km/h and we have indeed obtained these units.

(3) Check the significant figures. Because each of the values given in the problem has three significant figures, the answer
should also have three significant figures. The answer 30.0 km/hr does indeed have three significant figures, so this is
appropriate. Note that the significant figures in the conversion factor are not relevant because an hour is defined to be 60
minutes, so the precision of the conversion factor is perfect.

(4) Next, check whether the answer is reasonable. Let us consider some information from the problem—if you travel 10 km
in a third of an hour (20 min), you would travel three times that far in an hour. The answer does seem reasonable.

Solution for (b)
There are several ways to convert the average speed into meters per second.

(1) Start with the answer to (a) and convert km/h to m/s. Two conversion factors are needed—one to convert hours to
seconds, and another to convert kilometers to meters.

(2) Multiplying by these yields

_300kmy_1h . 1.000m (1.6)
Average speed = 30'0TX3,600 R p—

Average speed = 8.331. x7)

Discussion for (b)

If we had started with 0.500 km/min, we would have needed different conversion factors, but the answer would have been
the same: 8.33 m/s.

You may have noted that the answers in the worked example just covered were given to three digits. Why? When do you
need to be concerned about the number of digits in something you calculate? Why not write down all the digits your
calculator produces? The module Accuracy, Precision, and Significant Figures will help you answer these questions.

Nonstandard Units

While there are numerous types of units that we are all familiar with, there are others that are much more obscure. For
example, a firkin is a unit of volume that was once used to measure beer. One firkin equals about 34 liters. To learn more
about nonstandard units, use a dictionary or encyclopedia to research different “weights and measures.” Take note of any
unusual units, such as a barleycorn, that are not listed in the text. Think about how the unit is defined and state its
relationship to Sl units.

Some hummingbirds beat their wings more than 50 times per second. A scientist is measuring the time it takes for a
hummingbird to beat its wings once. Which fundamental unit should the scientist use to describe the measurement? Which
factor of 10 is the scientist likely to use to describe the motion precisely? Identify the metric prefix that corresponds to this
factor of 10.

Solution
The scientist will measure the time between each movement using the fundamental unit of seconds. Because the wings beat

so fast, the scientist will probably need to measure in milliseconds, or 10_3 seconds. (50 beats per second corresponds to
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20 milliseconds per beat.)

One cubic centimeter is equal to one milliliter. What does this tell you about the different units in the SI metric system?

Solution
The fundamental unit of length (meter) is probably used to create the derived unit of volume (liter). The measure of a milliliter
is dependent on the measure of a centimeter.

1.3 Accuracy, Precision, and Significant Figures

Figure 1.22 A double-pan mechanical balance is used to compare different masses. Usually an object with unknown mass is placed in one pan and
objects of known mass are placed in the other pan. When the bar that connects the two pans is horizontal, then the masses in both pans are equal.
The “known masses” are typically metal cylinders of standard mass such as 1 gram, 10 grams, and 100 grams. (credit: Serge Melki)

Figure 1.23 Many mechanical balances, such as double-pan balances, have been replaced by digital scales, which can typically measure the mass of
an object more precisely. Whereas a mechanical balance may only read the mass of an object to the nearest tenth of a gram, many digital scales can
measure the mass of an object up to the nearest thousandth of a gram. (credit: Karel Jakubec)

Learning Objectives

By the end of this section, you will be able to:

« Determine the appropriate number of significant figures in both addition and subtraction, as well as multiplication and
division calculations.
e Calculate the percent uncertainty of a measurement.

Accuracy and Precision of a Measurement

Science is based on observation and experiment—that is, on measurements. Accuracy is how close a measurement is to the
correct value for that measurement. For example, let us say that you are measuring the length of standard computer paper. The
packaging in which you purchased the paper states that it is 11.0 inches long. You measure the length of the paper three times
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and obtain the following measurements: 11.1 in., 11.2 in., and 10.9 in. These measurements are quite accurate because they are
very close to the correct value of 11.0 inches. In contrast, if you had obtained a measurement of 12 inches, your measurement
would not be very accurate.

The precision of a measurement system is refers to how close the agreement is between repeated measurements (which are
repeated under the same conditions). Consider the example of the paper measurements. The precision of the measurements
refers to the spread of the measured values. One way to analyze the precision of the measurements would be to determine the
range, or difference, between the lowest and the highest measured values. In that case, the lowest value was 10.9 in. and the
highest value was 11.2 in. Thus, the measured values deviated from each other by at most 0.3 in. These measurements were
relatively precise because they did not vary too much in value. However, if the measured values had been 10.9, 11.1, and 11.9,
then the measurements would not be very precise because there would be significant variation from one measurement to
another.

The measurements in the paper example are both accurate and precise, but in some cases, measurements are accurate but not
precise, or they are precise but not accurate. Let us consider an example of a GPS system that is attempting to locate the
position of a restaurant in a city. Think of the restaurant location as existing at the center of a bull's-eye target, and think of each
GPS attempt to locate the restaurant as a black dot. In Figure 1.24, you can see that the GPS measurements are spread out far
apart from each other, but they are all relatively close to the actual location of the restaurant at the center of the target. This
indicates a low precision, high accuracy measuring system. However, in Figure 1.25, the GPS measurements are concentrated
quite closely to one another, but they are far away from the target location. This indicates a high precision, low accuracy
measuring system.

Figure 1.24 A GPS system attempts to locate a restaurant at the center of the bull's-eye. The black dots represent each attempt to pinpoint the location
of the restaurant. The dots are spread out quite far apart from one another, indicating low precision, but they are each rather close to the actual location
of the restaurant, indicating high accuracy. (credit: Dark Evil)

Figure 1.25 In this figure, the dots are concentrated rather closely to one another, indicating high precision, but they are rather far away from the actual
location of the restaurant, indicating low accuracy. (credit: Dark Evil)

Accuracy, Precision, and Uncertainty

The degree of accuracy and precision of a measuring system are related to the uncertainty in the measurements. Uncertainty is
a quantitative measure of how much your measured values deviate from a standard or expected value. If your measurements
are not very accurate or precise, then the uncertainty of your values will be very high. In more general terms, uncertainty can be
thought of as a disclaimer for your measured values. For example, if someone asked you to provide the mileage on your car, you
might say that it is 45,000 miles, plus or minus 500 miles. The plus or minus amount is the uncertainty in your value. That is, you
are indicating that the actual mileage of your car might be as low as 44,500 miles or as high as 45,500 miles, or anywhere in
between. All measurements contain some amount of uncertainty. In our example of measuring the length of the paper, we might
say that the length of the paper is 11 in., plus or minus 0.2 in. The uncertainty in a measurement, A , is often denoted as A

(“delta A ), so the measurement result would be recorded as A + 6A . In our paper example, the length of the paper could be

expressed as 11 in. +£0.2.

The factors contributing to uncertainty in a measurement include:

1. Limitations of the measuring device,
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2. The skill of the person making the measurement,
3. Irregularities in the object being measured,
4. Any other factors that affect the outcome (highly dependent on the situation).

In our example, such factors contributing to the uncertainty could be the following: the smallest division on the ruler is 0.1 in., the
person using the ruler has bad eyesight, or one side of the paper is slightly longer than the other. At any rate, the uncertainty in a
measurement must be based on a careful consideration of all the factors that might contribute and their possible effects.

Making Connections: Real-World Connections—Fevers or Chills?

Uncertainty is a critical piece of information, both in physics and in many other real-world applications. Imagine you are
caring for a sick child. You suspect the child has a fever, so you check his or her temperature with a thermometer. What if
the uncertainty of the thermometer were 3.0°C ? If the child's temperature reading was 37.0°C (which is normal body

temperature), the “true” temperature could be anywhere from a hypothermic 34.0°C to a dangerously high 40.0°C . A
thermometer with an uncertainty of 3.0°C would be useless.

Percent Uncertainty

One method of expressing uncertainty is as a percent of the measured value. If a measurement A is expressed with
uncertainty, 6A , the percent uncertainty (%unc) is defined to be

% unc =%>< 100%. (1.8)

Example 1.2 Calculating Percent Uncertainty: A Bag of Apples

A grocery store sells 5 1b bags of apples. You purchase four bags over the course of a month and weigh the apples each
time. You obtain the following measurements:

« Week 1 weight: 4.8 Ib

* Week 2 weight: 5.3 1b

+ Week 3 weight: 4.9 1b

« Week 4 weight: 5.4 1b
You determine that the weight of the 5 1b bag has an uncertainty of +0.4 Ib . What is the percent uncertainty of the bag's
weight?
Strategy

First, observe that the expected value of the bag's weight, A , is 5 Ib. The uncertainty in this value, 6A , is 0.4 Ib. We can
use the following equation to determine the percent uncertainty of the weight:

% unc =%>< 100%. (1.9)
Solution
Plug the known values into the equation:
% unc =%x100% = 8%. (1.10)

Discussion

We can conclude that the weight of the apple bag is 5 Ib + 8% . Consider how this percent uncertainty would change if the
bag of apples were half as heavy, but the uncertainty in the weight remained the same. Hint for future calculations: when
calculating percent uncertainty, always remember that you must multiply the fraction by 100%. If you do not do this, you will
have a decimal quantity, not a percent value.

Uncertainties in Calculations

There is an uncertainty in anything calculated from measured quantities. For example, the area of a floor calculated from
measurements of its length and width has an uncertainty because the length and width have uncertainties. How big is the
uncertainty in something you calculate by multiplication or division? If the measurements going into the calculation have small
uncertainties (a few percent or less), then the method of adding percents can be used for multiplication or division. This
method says that the percent uncertainty in a quantity calculated by multiplication or division is the sum of the percent
uncertainties in the items used to make the calculation. For example, if a floor has a length of 4.00 m and a width of 3.00 m,

with uncertainties of 2% and 1% , respectively, then the area of the floor is 12.0 m? and has an uncertainty of 3% .
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(Expressed as an area this is 0.36 m? , which we round to 0.4 m? since the area of the floor is given to a tenth of a square
meter.)

A high school track coach has just purchased a new stopwatch. The stopwatch manual states that the stopwatch has an
uncertainty of +£0.05 s . Runners on the track coach's team regularly clock 100 m sprints of 11.49 s to 15.01 s. At the

school's last track meet, the first-place sprinter came in at 12.04 s and the second-place sprinter came in at 12.07 s . Will
the coach's new stopwatch be helpful in timing the sprint team? Why or why not?

Solution
No, the uncertainty in the stopwatch is too great to effectively differentiate between the sprint times.

Precision of Measuring Tools and Significant Figures

An important factor in the accuracy and precision of measurements involves the precision of the measuring tool. In general, a
precise measuring tool is one that can measure values in very small increments. For example, a standard ruler can measure
length to the nearest millimeter, while a caliper can measure length to the nearest 0.01 millimeter. The caliper is a more precise
measuring tool because it can measure extremely small differences in length. The more precise the measuring tool, the more
precise and accurate the measurements can be.

When we express measured values, we can only list as many digits as we initially measured with our measuring tool. For
example, if you use a standard ruler to measure the length of a stick, you may measure it to be 36.7 cm . You could not express
this value as 36.71 cm because your measuring tool was not precise enough to measure a hundredth of a centimeter. It should
be noted that the last digit in a measured value has been estimated in some way by the person performing the measurement.
For example, the person measuring the length of a stick with a ruler notices that the stick length seems to be somewhere in
between 36.6 cm and 36.7 cm, and he or she must estimate the value of the last digit. Using the method of significant
figures, the rule is that the last digit written down in a measurement is the first digit with some uncertainty. In order to determine
the number of significant digits in a value, start with the first measured value at the left and count the number of digits through the
last digit written on the right. For example, the measured value 36.7 cm has three digits, or significant figures. Significant
figures indicate the precision of a measuring tool that was used to measure a value.

Zeros

Special consideration is given to zeros when counting significant figures. The zeros in 0.053 are not significant, because they are
only placekeepers that locate the decimal point. There are two significant figures in 0.053. The zeros in 10.053 are not
placekeepers but are significant—this number has five significant figures. The zeros in 1300 may or may not be significant
depending on the style of writing numbers. They could mean the number is known to the last digit, or they could be
placekeepers. So 1300 could have two, three, or four significant figures. (To avoid this ambiguity, write 1300 in scientific
notation.) Zeros are significant except when they serve only as placekeepers.

Determine the number of significant figures in the following measurements:

a. 0.0009
b. 15,450.0
c. 6x10°
d. 87.990
e. 30.42

Solution

(a) 1; the zeros in this number are placekeepers that indicate the decimal point
(b) 6; here, the zeros indicate that a measurement was made to the 0.1 decimal point, so the zeros are significant

(c) 1; the value 103 signifies the decimal place, not the number of measured values

(d) 5; the final zero indicates that a measurement was made to the 0.001 decimal point, so it is significant

(e) 4; any zeros located in between significant figures in a number are also significant

Significant Figures in Calculations

When combining measurements with different degrees of accuracy and precision, the number of significant digits in the final
answer can be no greater than the number of significant digits in the least precise measured value. There are two different rules,
one for multiplication and division and the other for addition and subtraction, as discussed below.
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1. For multiplication and division: The result should have the same number of significant figures as the quantity having the
least significant figures entering into the calculation. For example, the area of a circle can be calculated from its radius using

A = zr? . Let us see how many significant figures the area has if the radius has only two—say, » = 1.2 m. Then,

A = zr? = (3.1415927..)x(1.2 m)? = 4.5238934 m? (1.12)

is what you would get using a calculator that has an eight-digit output. But because the radius has only two significant figures, it
limits the calculated quantity to two significant figures or

A=4.5m?, (1.12)
even though 7 is good to at least eight digits.

2. For addition and subtraction: The answer can contain no more decimal places than the least precise measurement.
Suppose that you buy 7.56 kg of potatoes in a grocery store as measured with a scale with precision 0.01 kg. Then you drop off
6.052 kg of potatoes at your laboratory as measured by a scale with precision 0.001 kg. Finally, you go home and add 13.7 kg of
potatoes as measured by a bathroom scale with precision 0.1 kg. How many kilograms of potatoes do you now have, and how
many significant figures are appropriate in the answer? The mass is found by simple addition and subtraction:

7.56 kg (1.13)
- 6.052 kg

+137 kg

Next, we identify the least precise measurement: 13.7 kg. This measurement is expressed to the 0.1 decimal place, so our final
answer must also be expressed to the 0.1 decimal place. Thus, the answer is rounded to the tenths place, giving us 15.2 kg.

Significant Figures in this Text

In this text, most numbers are assumed to have three significant figures. Furthermore, consistent numbers of significant figures
are used in all worked examples. You will note that an answer given to three digits is based on input good to at least three digits,
for example. If the input has fewer significant figures, the answer will also have fewer significant figures. Care is also taken that
the number of significant figures is reasonable for the situation posed. In some topics, particularly in optics, more accurate
numbers are needed and more than three significant figures will be used. Finally, if a number is exact, such as the two in the
formula for the circumference of a circle, ¢ = 27r, it does not affect the number of significant figures in a calculation.

Perform the following calculations and express your answer using the correct number of significant digits.

(a) A woman has two bags weighing 13.5 pounds and one bag with a weight of 10.2 pounds. What is the total weight of the
bags?

(b) The force F' on an object is equal to its mass m multiplied by its acceleration a . If a wagon with mass 55 kg

accelerates at a rate of 0.0255 m/s> , what is the force on the wagon? (The unit of force is called the newton, and it is
expressed with the symbol N.)

Solution

(a) 37.2 pounds; Because the number of bags is an exact value, it is not considered in the significant figures.

(b) 1.4 N; Because the value 55 kg has only two significant figures, the final value must also contain two significant figures.

PhET Explorations: Estimation

Explore size estimation in one, two, and three dimensions! Multiple levels of difficulty allow for progressive skill improvement.

PhET Interactive Simulation

Figure 1.26 Estimation (http://cnx.org/content/m54766/1.7/estimation_en.jar)
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1.4 Approximation

Learning Objectives

By the end of this section, you will be able to:
* Make reasonable approximations based on given data.

On many occasions, physicists, other scientists, and engineers need to make approximations or “guesstimates” for a particular
guantity. What is the distance to a certain destination? What is the approximate density of a given item? About how large a
current will there be in a circuit? Many approximate numbers are based on formulae in which the input quantities are known only
to a limited accuracy. As you develop problem-solving skills (that can be applied to a variety of fields through a study of physics),
you will also develop skills at approximating. You will develop these skills through thinking more quantitatively, and by being
willing to take risks. As with any endeavor, experience helps, as well as familiarity with units. These approximations allow us to
rule out certain scenarios or unrealistic numbers. Approximations also allow us to challenge others and guide us in our
approaches to our scientific world. Let us do two examples to illustrate this concept.

Example 1.3 Approximate the Height of a Building

Can you approximate the height of one of the buildings on your campus, or in your neighborhood? Let us make an
approximation based upon the height of a person. In this example, we will calculate the height of a 39-story building.
Strategy

Think about the average height of an adult male. We can approximate the height of the building by scaling up from the
height of a person.

Solution

Based on information in the example, we know there are 39 stories in the building. If we use the fact that the height of one
story is approximately equal to about the length of two adult humans (each human is about 2 m tall), then we can estimate

the total height of the building to be
2m 2 person (1.14)

1 person” 1 story

%39 stories = 156 m.

Discussion

You can use known quantities to determine an approximate measurement of unknown quantities. If your hand measures 10
cm across, how many hand lengths equal the width of your desk? What other measurements can you approximate besides
length?

Example 1.4 Approximating Vast Numbers: a Trillion Dollars

Figure 1.27 A bank stack contains one-hundred $100 bills, and is worth $10,000. How many bank stacks make up a trillion dollars? (credit:
Andrew Magill)

The U.S. federal deficit in the 2008 fiscal year was a little greater than $10 trillion. Most of us do not have any concept of

how much even one trillion actually is. Suppose that you were given a trillion dollars in $100 bills. If you made 100-bill stacks
and used them to evenly cover a football field (between the end zones), make an approximation of how high the money pile
would become. (We will use feet/inches rather than meters here because football fields are measured in yards.) One of your
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friends says 3 in., while another says 10 ft. What do you think?
Strategy

When you imagine the situation, you probably envision thousands of small stacks of 100 wrapped $100 bills, such as you
might see in movies or at a bank. Since this is an easy-to-approximate quantity, let us start there. We can find the volume of
a stack of 100 bills, find out how many stacks make up one trillion dollars, and then set this volume equal to the area of the
football field multiplied by the unknown height.

Solution

(1) Calculate the volume of a stack of 100 bills. The dimensions of a single bill are approximately 3 in. by 6 in. A stack of 100
of these is about 0.5 in. thick. So the total volume of a stack of 100 bills is:

volume of stack = lengthx widthxheight, (1.15)
volume of stack = 6 in.x3 in.x0.5 in.,

volume of stack = 9 in.>.
(2) Calculate the number of stacks. Note that a trillion dollars is equal to $1><1012, and a stack of one-hundred $100
bills is equal to $10,000, or $1x10%. The number of stacks you will have is:
$1x10"%(a trillion dollars)/ $1x 10* per stack = 1x10® stacks. (1.16)

(3) Calculate the area of a football field in square inches. The area of a football field is 100 ydx50 yd, which gives

5,000 ydz. Because we are working in inches, we need to convert square yards to square inches:

_ 2, 3ft  3ft 12in.12in. _ .2 (1.17)
Area = 5,000 yd ><1 ydxl ydx Tt X T = 6,480,000 in.~,

Area ~ 6x10%in.2.
This conversion gives us 6X 106 in.2 for the area of the field. (Note that we are using only one significant figure in these
calculations.)
(4) Calculate the total volume of the bills. The volume of all the $100 -bill stacks is
9 in.3 /stackx 103 stacks = 9x108 in.>.
(5) Calculate the height. To determine the height of the bills, use the equation:

volume of bills

area of fiel Xheight of money: (1.18)

volume of bills
area of fiel

Height of money

8. 3
Height of money = M;nz =1.33%10%in.,
6x10"in.

Height of money ~ 1x10%in. = 100 in.

The height of the money will be about 100 in. high. Converting this value to feet gives

100 in.x-1ft — 833 ft ~ 8 ft. a2y
12 in.

Discussion

The final approximate value is much higher than the early estimate of 3 in., but the other early estimate of 10 ft (120 in.) was
roughly correct. How did the approximation measure up to your first guess? What can this exercise tell you in terms of rough
“guesstimates” versus carefully calculated approximations?

Using mental math and your understanding of fundamental units, approximate the area of a regulation basketball court.
Describe the process you used to arrive at your final approximation.

Solution
An average male is about two meters tall. It would take approximately 15 men laid out end to end to cover the length, and

about 7 to cover the width. That gives an approximate area of 420 m?2.
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accuracy: the degree to which a measured value agrees with correct value for that measurement
approximation: an estimated value based on prior experience and reasoning

classical physics: physics that was developed from the Renaissance to the end of the 19th century
conversion factor: a ratio expressing how many of one unit are equal to another unit

derived units: units that can be calculated using algebraic combinations of the fundamental units

English units: system of measurement used in the United States; includes units of measurement such as feet, gallons, and
pounds

fundamental units: units that can only be expressed relative to the procedure used to measure them
kilogram: the Sl unit for mass, abbreviated (kg)

law: a description, using concise language or a mathematical formula, a generalized pattern in nature that is supported by
scientific evidence and repeated experiments

meter: the Sl unit for length, abbreviated (m)

method of adding percents: the percent uncertainty in a quantity calculated by multiplication or division is the sum of the
percent uncertainties in the items used to make the calculation

metric system: a system in which values can be calculated in factors of 10

model: representation of something that is often too difficult (or impossible) to display directly

modern physics: the study of relativity, quantum mechanics, or both

order of magnitude: refers to the size of a quantity as it relates to a power of 10

percent uncertainty: the ratio of the uncertainty of a measurement to the measured value, expressed as a percentage
physical quantity : a characteristic or property of an object that can be measured or calculated from other measurements

physics: the science concerned with describing the interactions of energy, matter, space, and time; it is especially interested
in what fundamental mechanisms underlie every phenomenon

precision: the degree to which repeated measurements agree with each other
quantum mechanics: the study of objects smaller than can be seen with a microscope

relativity: the study of objects moving at speeds greater than about 1% of the speed of light, or of objects being affected by a
strong gravitational field

scientific method: a method that typically begins with an observation and question that the scientist will research; next, the
scientist typically performs some research about the topic and then devises a hypothesis; then, the scientist will test the
hypothesis by performing an experiment; finally, the scientist analyzes the results of the experiment and draws a
conclusion

second: the Sl unit for time, abbreviated (s)

Sl units : the international system of units that scientists in most countries have agreed to use; includes units such as meters,
liters, and grams

significant figures: express the precision of a measuring tool used to measure a value

theory: an explanation for patterns in nature that is supported by scientific evidence and verified multiple times by various
groups of researchers

uncertainty: a quantitative measure of how much your measured values deviate from a standard or expected value

units : a standard used for expressing and comparing measurements

Section Summary

1.1 Physics: An Introduction
« Science seeks to discover and describe the underlying order and simplicity in nature.
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« Physics is the most basic of the sciences, concerning itself with energy, matter, space and time, and their interactions.
« Scientific laws and theories express the general truths of nature and the body of knowledge they encompass. These laws
of nature are rules that all natural processes appear to follow.

1. 2 Physical Quantities and Units
Physical quantities are a characteristic or property of an object that can be measured or calculated from other
measurements.

« Units are standards for expressing and comparing the measurement of physical quantities. All units can be expressed as
combinations of four fundamental units.

¢ The four fundamental units we will use in this text are the meter (for length), the kilogram (for mass), the second (for time),
and the ampere (for electric current). These units are part of the metric system, which uses powers of 10 to relate quantities
over the vast ranges encountered in nature.

« The four fundamental units are abbreviated as follows: meter, m; kilogram, kg; second, s; and ampere, A. The metric
system also uses a standard set of prefixes to denote each order of magnitude greater than or lesser than the fundamental
unit itself.

« Unit conversions involve changing a value expressed in one type of unit to another type of unit. This is done by using
conversion factors, which are ratios relating equal quantities of different units.

1.3 Accuracy, Precision, and Significant Figures

« Accuracy of a measured value refers to how close a measurement is to the correct value. The uncertainty in a
measurement is an estimate of the amount by which the measurement result may differ from this value.

« Precision of measured values refers to how close the agreement is between repeated measurements.

« The precision of a measuring tool is related to the size of its measurement increments. The smaller the measurement
increment, the more precise the tool.

« Significant figures express the precision of a measuring tool.

« When multiplying or dividing measured values, the final answer can contain only as many significant figures as the least
precise value.

* When adding or subtracting measured values, the final answer cannot contain more decimal places than the least precise
value.

1.4 Approximation
Scientists often approximate the values of quantities to perform calculations and analyze systems.

Conceptual Questions

1.1 Physics: An Introduction

1. Models are particularly useful in relativity and quantum mechanics, where conditions are outside those normally encountered
by humans. What is a model?

2. How does a model differ from a theory?

3. If two different theories describe experimental observations equally well, can one be said to be more valid than the other
(assuming both use accepted rules of logic)?

4. What determines the validity of a theory?

5. Certain criteria must be satisfied if a measurement or observation is to be believed. Will the criteria necessarily be as strict for
an expected result as for an unexpected result?

6. Can the validity of a model be limited, or must it be universally valid? How does this compare to the required validity of a
theory or a law?

7. Classical physics is a good approximation to modern physics under certain circumstances. What are they?
8. When is it necessary to use relativistic quantum mechanics?

9. Can classical physics be used to accurately describe a satellite moving at a speed of 7500 m/s? Explain why or why not.

1.2 Physical Quantities and Units

10. Identify some advantages of metric units.

1.3 Accuracy, Precision, and Significant Figures
11. What is the relationship between the accuracy and uncertainty of a measurement?

12. Prescriptions for vision correction are given in units called diopters (D). Determine the meaning of that unit. Obtain
information (perhaps by calling an optometrist or performing an internet search) on the minimum uncertainty with which
corrections in diopters are determined and the accuracy with which corrective lenses can be produced. Discuss the sources of
uncertainties in both the prescription and accuracy in the manufacture of lenses.
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Problems & Exercises

1.2 Physical Quantities and Units

1. The speed limit on some interstate highways is roughly 100
km/h. (a) What is this in meters per second? (b) How many
miles per hour is this?

2. A car is traveling at a speed of 33 m/s . (a) What is its
speed in kilometers per hour? (b) Is it exceeding the

90 km/h speed limit?

3. Show that 1.0 m/s = 3.6 km/h . Hint: Show the explicit
steps involved in converting 1.0 m/s = 3.6 km/h.

4. American football is played on a 100-yd-long field,
excluding the end zones. How long is the field in meters?
(Assume that 1 meter equals 3.281 feet.)

5. Soccer fields vary in size. A large soccer field is 115 m long
and 85 m wide. What are its dimensions in feet and inches?
(Assume that 1 meter equals 3.281 feet.)

6. What is the height in meters of a person who is 6 ft 1.0 in.
tall? (Assume that 1 meter equals 39.37 in.)

7. Mount Everest, at 29,028 feet, is the tallest mountain on
the Earth. What is its height in kilometers? (Assume that 1
kilometer equals 3,281 feet.)

8. The speed of sound is measured to be 342 m/s on a
certain day. What is this in km/h?

9. Tectonic plates are large segments of the Earth's crust that
move slowly. Suppose that one such plate has an average
speed of 4.0 cm/year. (a) What distance does it move in 1 s at

this speed? (b) What is its speed in kilometers per million
years?

10. (a) Refer to Table 1.3 to determine the average distance
between the Earth and the Sun. Then calculate the average
speed of the Earth in its orbit in kilometers per second. (b)
What is this in meters per second?

1.3 Accuracy, Precision, and Significant
Figures

Express your answers to problems in this section to the
correct number of significant figures and proper units.

11. Suppose that your bathroom scale reads your mass as 65
kg with a 3% uncertainty. What is the uncertainty in your mass
(in kilograms)?

12. A good-quality measuring tape can be off by 0.50 cm over
a distance of 20 m. What is its percent uncertainty?

13. (a) A car speedometer has a 5.0% uncertainty. What is
the range of possible speeds when it reads 90 km/h ? (b)
Convert this range to miles per hour. (1 km = 0.6214 mi)

14. An infant's pulse rate is measured to be 130 + 5 beats/
min. What is the percent uncertainty in this measurement?

15. (a) Suppose that a person has an average heart rate of
72.0 beats/min. How many beats does he or she have in 2.0
y? (b) In 2.00 y? (c) In 2.000 y?

16. A can contains 375 mL of soda. How much is left after
308 mL is removed?
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17. State how many significant figures are proper in the
results of the following calculations: (a)

(106.7)(98.2)/ (46.210)(1.01) (b) (18.7)2 (c)
(1.60><10-19)(3712) .

18. (a) How many significant figures are in the numbers 99
and 1007 (b) If the uncertainty in each number is 1, what is
the percent uncertainty in each? (c) Which is a more
meaningful way to express the accuracy of these two
numbers, significant figures or percent uncertainties?

19. (a) If your speedometer has an uncertainty of 2.0 km/h
at a speed of 90 km/h , what is the percent uncertainty? (b)
If it has the same percent uncertainty when it reads 60 km/h
, What is the range of speeds you could be going?

20. (a) A person's blood pressure is measured to be

120 + 2 mm Hg . What is its percent uncertainty? (b)

Assuming the same percent uncertainty, what is the
uncertainty in a blood pressure measurement of
80 mm Hg?

21. A person measures his or her heart rate by counting the
number of beats in 30 s. If 40 + 1 beats are counted in

30.0 + 0.5 s, what is the heart rate and its uncertainty in
beats per minute?

22. What is the area of a circle 3.102 cm in diameter?

23. If a marathon runner averages 9.5 mi/h, how long does it
take him or her to run a 26.22 mi marathon?

24. A marathon runner completes a 42.188 km course in
2 h,30min, and 12 s. There is an uncertainty of 25 m in

the distance traveled and an uncertainty of 1 s in the elapsed
time. (a) Calculate the percent uncertainty in the distance. (b)
Calculate the uncertainty in the elapsed time. (c) What is the
average speed in meters per second? (d) What is the
uncertainty in the average speed?

25. The sides of a small rectangular box are measured to be
1.80 £0.01 cm, 2.05+0.02 cm, and 3.1 +0.1 cm

long. Calculate its volume and uncertainty in cubic
centimeters.

26. When non-metric units were used in the United Kingdom,
a unit of mass called the pound-mass (Ibm) was employed,
where 1 Ibm = 0.4539 kg . (a) If there is an uncertainty of
0.0001 kg in the pound-mass unit, what is its percent

uncertainty? (b) Based on that percent uncertainty, what
mass in pound-mass has an uncertainty of 1 kg when
converted to kilograms?

27. The length and width of a rectangular room are measured
to be 3.955 +0.005 m and 3.050 + 0.005 m . Calculate

the area of the room and its uncertainty in square meters.

28. A car engine moves a piston with a circular cross section
of 7.500 + 0.002 cm diameter a distance of

3.250 £ 0.001 cm to compress the gas in the cylinder. (a)

By what amount is the gas decreased in volume in cubic
centimeters? (b) Find the uncertainty in this volume.

1.4 Approximation

29. How many heartbeats are there in a lifetime?
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30. A generation is about one-third of a lifetime.
Approximately how many generations have passed since the
year 0 AD?

31. How many times longer than the mean life of an
extremely unstable atomic nucleus is the lifetime of a human?
(Hint: The lifetime of an unstable atomic nucleus is on the

orderof 10722 s )

32. Calculate the approximate number of atoms in a
bacterium. Assume that the average mass of an atom in the
bacterium is ten times the mass of a hydrogen atom. (Hint:

The mass of a hydrogen atom is on the order of 10=% kg

and the mass of a bacterium is on the order of 10~ kg.)

Figure 1.28 This color-enhanced photo shows Salmonella typhimurium
(red) attacking human cells. These bacteria are commonly known for
causing foodborne illness. Can you estimate the number of atoms in
each bacterium? (credit: Rocky Mountain Laboratories, NIAID, NIH)

33. Approximately how many atoms thick is a cell membrane,
assuming all atoms there average about twice the size of a
hydrogen atom?

34. (a) What fraction of Earth's diameter is the greatest ocean
depth? (b) The greatest mountain height?

35. (a) Calculate the number of cells in a hummingbird
assuming the mass of an average cell is ten times the mass
of a bacterium. (b) Making the same assumption, how many
cells are there in a human?

36. Assuming one nerve impulse must end before another
can begin, what is the maximum firing rate of a nerve in
impulses per second?
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2

Figure 2.1 The motion of an American kestrel through the air can be described by the bird's displacement, speed, velocity, and acceleration. When it
flies in a straight line without any change in direction, its motion is said to be one dimensional. (credit: Vince Maidens, Wikimedia Commons)
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2.1. Displacement

2.2. Vectors, Scalars, and Coordinate Systems

2.3. Time, Velocity, and Speed

2.4. Acceleration

2.5. Motion Equations for Constant Acceleration in One Dimension
2.6. Problem-Solving Basics for One Dimensional Kinematics

2.7. Falling Objects

2.8. Graphical Analysis of One Dimensional Motion

Connection for AP® Courses

Objects are in motion everywhere we look. Everything from a tennis game to a space-probe flyby of the planet Neptune involves
motion. When you are resting, your heart moves blood through your veins. Even in inanimate objects, there is a continuous
motion in the vibrations of atoms and molecules. Questions about motion are interesting in and of themselves: How long will it
take for a space probe to get to Mars? Where will a football land if it is thrown at a certain angle?

Understanding motion will not only provide answers to these questions, but will be key to understanding more advanced
concepts in physics. For example, the discussion of force in Chapter 4 will not fully make sense until you understand
acceleration. This relationship between force and acceleration is also critical to understanding Big Idea 3.

Additionally, this unit will explore the topic of reference frames, a critical component to quantifying how things move. If you have
ever waved to a departing friend at a train station, you are likely familiar with this idea. While you see your friend move away
from you at a considerable rate, those sitting with her will likely see her as not moving. The effect that the chosen reference
frame has on your observations is substantial, and an understanding of this is needed to grasp both Enduring Understanding 3.A
and Essential Knowledge 3.A.1.

Our formal study of physics begins with kinematics, which is defined as the study of motion without considering its causes. In
one- and two-dimensional kinematics we will study only the motion of a football, for example, without worrying about what forces
cause or change its motion. In this chapter, we examine the simplest type of motion—namely, motion along a straight line, or
one-dimensional motion. Later, in two-dimensional kinematics, we apply concepts developed here to study motion along curved
paths (two- and three-dimensional motion), for example, that of a car rounding a curve.

The content in this chapter supports:
Big Idea 3 The interactions of an object with other objects can be described by forces.
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Enduring Understanding 3.A All forces share certain common characteristics when considered by observers in inertial reference
frames.

Essential Knowledge 3.A.1 An observer in a particular reference frame can describe the motion of an object using such
guantities as position, displacement, distance, velocity, speed, and acceleration.

2.1 Displacement

i T i : :
Figure 2.2 These cyclists in Vietnam can be described by their position relative to buildings and a canal. Their motion can be described by their change
in position, or displacement, in the frame of reference. (credit: Suzan Black, Fotopedia)

Le

By the end of this section, you will be able to:

« Define position, displacement, distance, and distance traveled in a particular frame of reference.

« Explain the relationship between position and displacement.

« Distinguish between displacement and distance traveled.

e Calculate displacement and distance given initial position, final position, and the path between the two.

The information presented in this section supports the following AP® learning objectives and science practices:

« 3.A.1.1 The student is able to express the motion of an object using narrative, mathematical, and graphical
representations. (S.P. 1.5, 2.1, 2.2)

« 3.A.1.3 The student is able to analyze experimental data describing the motion of an object and is able to express the
results of the analysis using narrative, mathematical, and graphical representations. (S.P. 5.1)

Position

In order to describe the motion of an object, you must first be able to describe its position—where it is at any particular time.
More precisely, you need to specify its position relative to a convenient reference frame. Earth is often used as a reference
frame, and we often describe the position of an object as it relates to stationary objects in that reference frame. For example, a
rocket launch would be described in terms of the position of the rocket with respect to the Earth as a whole, while a professor's
position could be described in terms of where she is in relation to the nearby white board. (See Figure 2.3.) In other cases, we
use reference frames that are not stationary but are in motion relative to the Earth. To describe the position of a person in an
airplane, for example, we use the airplane, not the Earth, as the reference frame. (See Figure 2.4.)

Displacement

If an object moves relative to a reference frame (for example, if a professor moves to the right relative to a white board or a
passenger moves toward the rear of an airplane), then the object's position changes. This change in position is known as
displacement. The word “displacement” implies that an object has moved, or has been displaced.

Displacement
Displacement is the change in position of an object:

Ax = xp — X, @1

where Ax is displacement, x; is the final position, and x,, is the initial position.

In this text the upper case Greek letter A (delta) always means “change in” whatever quantity follows it; thus, Ax means

This OpenStax book is available for free at http://cnx.org/content/col11844/1.14



Chapter 2 | Kinematics 35

change in position. Always solve for displacement by subtracting initial position x( from final position x; .

Note that the S| unit for displacement is the meter (m) (see Physical Quantities and Units), but sometimes kilometers, miles,
feet, and other units of length are used. Keep in mind that when units other than the meter are used in a problem, you may need
to convert them into meters to complete the calculation.

¥

Ax=x —xy=+20m

T T %
* “F
1.5m 35m

Figure 2.3 A professor paces left and right while lecturing. Her position relative to the blackboard is given by X . The +2.0 m displacement of the
professor relative to the blackboard is represented by an arrow pointing to the right.

EEEEEEEEEEED]]]]]]]E

—
| | -
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2.0m 6.0 m

Figure 2.4 A passenger moves from his seat to the back of the plane. His location relative to the airplane is given by X . The -4 m displacement of the

passenger relative to the plane is represented by an arrow toward the rear of the plane. Notice that the arrow representing his displacement is twice as
long as the arrow representing the displacement of the professor (he moves twice as far) in Figure 2.3.

Note that displacement has a direction as well as a magnitude. The professor's displacement is 2.0 m to the right, and the airline
passenger's displacement is 4.0 m toward the rear. In one-dimensional motion, direction can be specified with a plus or minus
sign. When you begin a problem, you should select which direction is positive (usually that will be to the right or up, but you are
free to select positive as being any direction). The professor's initial position is xy = 1.5 m and her final position is

Xxg = 3.5 m. Thus her displacement is
Ax=x;—x9g=35m—-15m= +20m. 2.2

In this coordinate system, motion to the right is positive, whereas motion to the left is negative. Similarly, the airplane passenger's
initial position is xy = 6.0 m and his final position is x; = 2.0 m, so his displacement is
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Ax=x;—x5=2.0m—-6.0m=-4.0m. (2.3)

His displacement is negative because his motion is toward the rear of the plane, or in the negative x direction in our coordinate
system.

Distance

Although displacement is described in terms of direction, distance is not. Distance is defined to be the magnitude or size of
displacement between two positions. Note that the distance between two positions is not the same as the distance traveled
between them. Distance traveled is the total length of the path traveled between two positions. Distance has no direction and,
thus, no sign. For example, the distance the professor walks is 2.0 m. The distance the airplane passenger walks is 4.0 m.

Misconception Alert: Distance Traveled vs. Magnitude of Displacement

It is important to note that the distance traveled, however, can be greater than the magnitude of the displacement (by
magnitude, we mean just the size of the displacement without regard to its direction; that is, just a number with a unit). For
example, the professor could pace back and forth many times, perhaps walking a distance of 150 m during a lecture, yet still
end up only 2.0 m to the right of her starting point. In this case her displacement would be +2.0 m, the magnitude of her
displacement would be 2.0 m, but the distance she traveled would be 150 m. In kinematics we nearly always deal with
displacement and magnitude of displacement, and almost never with distance traveled. One way to think about this is to
assume you marked the start of the motion and the end of the motion. The displacement is simply the difference in the
position of the two marks and is independent of the path taken in traveling between the two marks. The distance traveled,
however, is the total length of the path taken between the two marks.

A cyclist rides 3 km west and then turns around and rides 2 km east. (a) What is her displacement? (b) What distance does
she ride? (c) What is the magnitude of her displacement?

Solution
Ax; = -3 km N
A
(e ]
| W(—) E(+x)
| Xp |X(]
I S
Ax; = +2 km
Figure 2.5
(a) The rider's displacement is Ax = xy — xg = —1 km . (The displacement is negative because we take east to be

positive and west to be negative.)
(b) The distance traveled is 3 km + 2 km = 5 km..

(c) The magnitude of the displacementis 1 km .
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2.2 Vectors, Scalars, and Coordinate Systems

Figure 2.6 The motion of this Eclipse Concept jet can be described in terms of the distance it has traveled (a scalar quantity) or its displacement in a
specific direction (a vector quantity). In order to specify the direction of motion, its displacement must be described based on a coordinate system. In
this case, it may be convenient to choose motion toward the left as positive motion (it is the forward direction for the plane), although in many cases,
the X -coordinate runs from left to right, with motion to the right as positive and motion to the left as negative. (credit: Armchair Aviator, Flickr)

Learning Objectives

By the end of this section, you will be able to:

» Define and distinguish between scalar and vector quantities.
» Assign a coordinate system for a scenario involving one-dimensional motion.

The information presented in this section supports the following AP® learning objectives and science practices:
* 3.A.1.2 The student is able to design an experimental investigation of the motion of an object.

What is the difference between distance and displacement? Whereas displacement is defined by both direction and magnitude,
distance is defined only by magnitude. Displacement is an example of a vector quantity. Distance is an example of a scalar
quantity. A vector is any quantity with both magnitude and direction. Other examples of vectors include a velocity of 90 km/h east
and a force of 500 newtons straight down.

The direction of a vector in one-dimensional motion is given simply by a plus (+ ) or minus ( — ) sign. Vectors are

represented graphically by arrows. An arrow used to represent a vector has a length proportional to the vector's magnitude (e.g.,
the larger the magnitude, the longer the length of the vector) and points in the same direction as the vector.

Some physical quantities, like distance, either have no direction or none is specified. A scalar is any quantity that has a
magnitude, but no direction. For example, a 20°C temperature, the 250 kilocalories (250 Calories) of energy in a candy bar, a
90 km/h speed limit, a person's 1.8 m height, and a distance of 2.0 m are all scalars—quantities with no specified direction. Note,
however, that a scalar can be negative, such as a —20°C temperature. In this case, the minus sign indicates a point on a scale
rather than a direction. Scalars are never represented by arrows.

Coordinate Systems for One-Dimensional Motion

In order to describe the direction of a vector quantity, you must designate a coordinate system within the reference frame. For
one-dimensional motion, this is a simple coordinate system consisting of a one-dimensional coordinate line. In general, when
describing horizontal motion, motion to the right is usually considered positive, and motion to the left is considered negative. With
vertical motion, motion up is usually positive and motion down is negative. In some cases, however, as with the jet in Figure 2.6,
it can be more convenient to switch the positive and negative directions. For example, if you are analyzing the motion of falling
objects, it can be useful to define downwards as the positive direction. If people in a race are running to the left, it is useful to
define left as the positive direction. It does not matter as long as the system is clear and consistent. Once you assign a positive
direction and start solving a problem, you cannot change it.
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Figure 2.7 It is usually convenient to consider motion upward or to the right as positive ( + ) and motion downward or to the left as negative ( — ) .

A person's speed can stay the same as he or she rounds a corner and changes direction. Given this information, is speed a
scalar or a vector quantity? Explain.

Solution
Speed is a scalar quantity. It does not change at all with direction changes; therefore, it has magnitude only. If it were a
vector quantity, it would change as direction changes (even if its magnitude remained constant).

Switching Reference Frames

A fundamental tenet of physics is that information about an event can be gathered from a variety of reference frames. For
example, imagine that you are a passenger walking toward the front of a bus. As you walk, your motion is observed by a
fellow bus passenger and by an observer standing on the sidewalk.

Both the bus passenger and sidewalk observer will be able to collect information about you. They can determine how far you
moved and how much time it took you to do so. However, while you moved at a consistent pace, both observers will get
different results. To the passenger sitting on the bus, you moved forward at what one would consider a normal pace,
something similar to how quickly you would walk outside on a sunny day. To the sidewalk observer though, you will have
moved much quicker. Because the bus is also moving forward, the distance you move forward against the sidewalk each
second increases, and the sidewalk observer must conclude that you are moving at a greater pace.

To show that you understand this concept, you will need to create an event and think of a way to view this event from two
different frames of reference. In order to ensure that the event is being observed simultaneously from both frames, you will
need an assistant to help out. An example of a possible event is to have a friend ride on a skateboard while tossing a ball.
How will your friend observe the ball toss, and how will those observations be different from your own?

Your task is to describe your event and the observations of your event from both frames of reference. Answer the following
questions below to demonstrate your understanding. For assistance, you can review the information given in the ‘Position’
paragraph at the start of Section 2.1.

1. What is your event? What object are both you and your assistant observing?

2. What do you see as the event takes place?

3. What does your assistant see as the event takes place?

4. How do your reference frames cause you and your assistant to have two different sets of observations?
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2.3 Time, Velocity, and Speed

Figure 2.8 The motion of these racing snails can be described by their speeds and their velocities. (credit: tobitasflickr, Flickr)

Learning Objectives

By the end of this section, you will be able to:

« Explain the relationships between instantaneous velocity, average velocity, instantaneous speed, average speed,
displacement, and time.

» Calculate velocity and speed given initial position, initial time, final position, and final time.

» Derive a graph of velocity vs. time given a graph of position vs. time.

* Interpret a graph of velocity vs. time.

The information presented in this section supports the following AP® learning objectives and science practices:

« 3.A.1.1 The student is able to express the motion of an object using narrative, mathematical, and graphical
representations. (S.P. 1.5, 2.1, 2.2)

« 3.A.1.3 The student is able to analyze experimental data describing the motion of an object and is able to express the
results of the analysis using narrative, mathematical, and graphical representations. (S.P. 5.1)

There is more to motion than distance and displacement. Questions such as, “How long does a foot race take?” and “What was
the runner's speed?” cannot be answered without an understanding of other concepts. In this section we add definitions of time,
velocity, and speed to expand our description of motion.

Time
As discussed in Physical Quantities and Units, the most fundamental physical quantities are defined by how they are
measured. This is the case with time. Every measurement of time involves measuring a change in some physical quantity. It may

be a number on a digital clock, a heartbeat, or the position of the Sun in the sky. In physics, the definition of time is simple— time
is change, or the interval over which change occurs. It is impossible to know that time has passed unless something changes.

The amount of time or change is calibrated by comparison with a standard. The Sl unit for time is the second, abbreviated s. We
might, for example, observe that a certain pendulum makes one full swing every 0.75 s. We could then use the pendulum to
measure time by counting its swings or, of course, by connecting the pendulum to a clock mechanism that registers time on a
dial. This allows us to not only measure the amount of time, but also to determine a sequence of events.

How does time relate to motion? We are usually interested in elapsed time for a particular motion, such as how long it takes an
airplane passenger to get from his seat to the back of the plane. To find elapsed time, we note the time at the beginning and end
of the motion and subtract the two. For example, a lecture may start at 11:00 A.M. and end at 11:50 A.M., so that the elapsed
time would be 50 min. Elapsed time At is the difference between the ending time and beginning time,

At = tf - to, (24)

where At is the change in time or elapsed time, ?; is the time at the end of the motion, and ¢, is the time at the beginning of
the motion. (As usual, the delta symbol, A, means the change in the quantity that follows it.)
Life is simpler if the beginning time () is taken to be zero, as when we use a stopwatch. If we were using a stopwatch, it would
simply read zero at the start of the lecture and 50 min atthe end. If 5 =0 ,then Ar =1t =1t.
In this text, for simplicity's sake,

 motion starts at time equal to zero (¢ = 0)

+ the symbol # is used for elapsed time unless otherwise specified (At =t = 1)
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Velocity

Your notion of velocity is probably the same as its scientific definition. You know that if you have a large displacement in a small
amount of time you have a large velocity, and that velocity has units of distance divided by time, such as miles per hour or
kilometers per hour.

Average Velocity

Average velocity is displacement (change in position) divided by the time of travel,

5 =Ax _ X~ %o (2.5)
At Ig—lg’

where Vv is the average (indicated by the bar over the v) velocity, Ax is the change in position (or displacement), and x;

and x are the final and beginning positions at times 7 and 7, respectively. If the starting time 7, is taken to be zero,

then the average velocity is simply

Ax (2.6)

Notice that this definition indicates that velocity is a vector because displacement is a vector. It has both magnitude and direction.
The Sl unit for velocity is meters per second or m/s, but many other units, such as km/h, mi/h (also written as mph), and cm/s,
are in common use. Suppose, for example, an airplane passenger took 5 seconds to move -4 m (the minus sign indicates that
displacement is toward the back of the plane). His average velocity would be

v —Ax_—4m_ — 0.8 m/s. (2.7)
t 5s

The minus sign indicates the average velocity is also toward the rear of the plane.

The average velocity of an object does not tell us anything about what happens to it between the starting point and ending point,
however. For example, we cannot tell from average velocity whether the airplane passenger stops momentarily or backs up
before he goes to the back of the plane. To get more details, we must consider smaller segments of the trip over smaller time
intervals.
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Figure 2.9 A more detailed record of an airplane passenger heading toward the back of the plane, showing smaller segments of his trip.

The smaller the time intervals considered in a motion, the more detailed the information. When we carry this process to its logical
conclusion, we are left with an infinitesimally small interval. Over such an interval, the average velocity becomes the
instantaneous velocity or the velocity at a specific instant. A car's speedometer, for example, shows the magnitude (but not the
direction) of the instantaneous velocity of the car. (Police give tickets based on instantaneous velocity, but when calculating how
long it will take to get from one place to another on a road trip, you need to use average velocity.) Instantaneous velocity v is

the average velocity at a specific instant in time (or over an infinitesimally small time interval).

Mathematically, finding instantaneous velocity, v, at a precise instant ¢ can involve taking a limit, a calculus operation beyond
the scope of this text. However, under many circumstances, we can find precise values for instantaneous velocity without
calculus.

Speed

In everyday language, most people use the terms “speed” and “velocity” interchangeably. In physics, however, they do not have
the same meaning and they are distinct concepts. One major difference is that speed has no direction. Thus speed is a scalar.
Just as we need to distinguish between instantaneous velocity and average velocity, we also need to distinguish between
instantaneous speed and average speed.

Instantaneous speed is the magnitude of instantaneous velocity. For example, suppose the airplane passenger at one instant
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had an instantaneous velocity of —=3.0 m/s (the minus meaning toward the rear of the plane). At that same time his instantaneous
speed was 3.0 m/s. Or suppose that at one time during a shopping trip your instantaneous velocity is 40 km/h due north. Your
instantaneous speed at that instant would be 40 km/h—the same magnitude but without a direction. Average speed, however, is
very different from average velocity. Average speed is the distance traveled divided by elapsed time.

We have noted that distance traveled can be greater than displacement. So average speed can be greater than average velocity,
which is displacement divided by time. For example, if you drive to a store and return home in half an hour, and your car's
odometer shows the total distance traveled was 6 km, then your average speed was 12 km/h. Your average velocity, however,
was zero, because your displacement for the round trip is zero. (Displacement is change in position and, thus, is zero for a round
trip.) Thus average speed is not simply the magnitude of average velocity.

2

Axmt =

Home

Figure 2.10 During a 30-minute round trip to the store, the total distance traveled is 6 km. The average speed is 12 km/h. The displacement for the
round trip is zero, since there was no net change in position. Thus the average velocity is zero.

Another way of visualizing the motion of an object is to use a graph. A plot of position or of velocity as a function of time can be
very useful. For example, for this trip to the store, the position, velocity, and speed-vs.-time graphs are displayed in Figure 2.11.
(Note that these graphs depict a very simplified model of the trip. We are assuming that speed is constant during the trip, which
is unrealistic given that we'll probably stop at the store. But for simplicity's sake, we will model it with no stops or changes in
speed. We are also assuming that the route between the store and the house is a perfectly straight line.)
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Position vs. Time
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Figure 2.11 Position vs. time, velocity vs. time, and speed vs. time on a trip. Note that the velocity for the return trip is negative.

Making Connections: Take-Home Investigation—Getting a Sense of Speed

If you have spent much time driving, you probably have a good sense of speeds between about 10 and 70 miles per hour.
But what are these in meters per second? What do we mean when we say that something is moving at 10 m/s? To get a
better sense of what these values really mean, do some observations and calculations on your own:

¢ calculate typical car speeds in meters per second
« estimate jogging and walking speed by timing yourself; convert the measurements into both m/s and mi/h
« determine the speed of an ant, snail, or falling leaf
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Check Your Understanding

A commuter train travels from Baltimore to Washington, DC, and back in 1 hour and 45 minutes. The distance between the
two stations is approximately 40 miles. What is (a) the average velocity of the train, and (b) the average speed of the train in
m/s?

Solution
(a) The average velocity of the train is zero because xy = Xy ; the train ends up at the same place it starts.

(b) The average speed of the train is calculated below. Note that the train travels 40 miles one way and 40 miles back, for a
total distance of 80 miles.

distance _ _ 80 miles (2.8)
time 105 minutes
80 miles , 5280 feet, 1 meter 1 minute _ 50 /s (2.9

105 minutes” 1 mile ~ 3.28 feet” 60 seconds

2.4 Acceleration

" B -~ 4,
Figure 2.12 A plane decelerates, or slows down, as it comes in for landing in St. Maarten. Its acceler
Steve Conry, Flickr)

Learning Objectives

By the end of this section, you will be able to:

ation is opposite in direction to its velocity. (credit:

« Define and distinguish between instantaneous acceleration and average acceleration.
« Calculate acceleration given initial time, initial velocity, final time, and final velocity.

The information presented in this section supports the following AP® learning objectives and science practices:

» 3.A.1.1 The student is able to express the motion of an object using narrative, mathematical, and graphical
representations. (S.P. 1.5, 2.1, 2.2)

» 3.A.1.3 The student is able to analyze experimental data describing the motion of an object and is able to express the
results of the analysis using narrative, mathematical, and graphical representations. (S.P. 5.1)

In everyday conversation, to accelerate means to speed up. The accelerator in a car can in fact cause it to speed up. The greater
the acceleration, the greater the change in velocity over a given time. The formal definition of acceleration is consistent with
these notions, but more inclusive.

Average Acceleration

Average Acceleration is the rate at which velocity changes,

(2.10)

a = Av _Yr=Vo
At fg—1lp’

where a is average acceleration, v is velocity, and ¢ is time. (The bar over the a means average acceleration.)

Because acceleration is velocity in m/s divided by time in s, the Sl units for acceleration are m/s2 , meters per second squared
or meters per second per second, which literally means by how many meters per second the velocity changes every second.
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Recall that velocity is a vector—it has both magnitude and direction. This means that a change in velocity can be a change in
magnitude (or speed), but it can also be a change in direction. For example, if a car turns a corner at constant speed, it is
accelerating because its direction is changing. The quicker you turn, the greater the acceleration. So there is an acceleration
when velocity changes either in magnitude (an increase or decrease in speed) or in direction, or both.

Acceleration as a Vector

Acceleration is a vector in the same direction as the change in velocity, Av . Since velocity is a vector, it can change either
in magnitude or in direction. Acceleration is therefore a change in either speed or direction, or both.

Keep in mind that although acceleration is in the direction of the change in velocity, it is not always in the direction of motion.
When an object's acceleration is in the same direction of its motion, the object will speed up. However, when an object's
acceleration is opposite to the direction of its motion, the object will slow down. Speeding up and slowing down should not be
confused with a positive and negative acceleration. The next two examples should help to make this distinction clear.

Figure 2.13 A subway train in Sao Paulo, Brazil, decelerates as it comes into a station. It is accelerating in a direction opposite to its direction of
motion. (credit: Yusuke Kawasaki, Flickr)

Making Connections: Car Motion

A b > > B
B w > > #
C > > = = b .
D « - = -4
E « 2 & <

Figure 2.14 Above are arrows representing the motion of five cars (A—E). In all five cases, the positive direction should be considered to the right
of the page.

Consider the acceleration and velocity of each car in terms of its direction of travel.

p

A > » » >

Figure 2.15 Car A is speeding up.

Because the positive direction is considered to the right of the paper, Car A is moving with a positive velocity. Because it is
speeding up while moving with a positive velocity, its acceleration is also considered positive.
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B > > - >

Figure 2.16 Car B is slowing down.

Because the positive direction is considered to the right of the paper, Car B is also moving with a positive velocity. However,
because it is slowing down while moving with a positive velocity, its acceleration is considered negative. (This can be viewed
in a mathematical manner as well. If the car was originally moving with a velocity of +25 m/s, it is finishing with a speed less
than that, like +5 m/s. Because the change in velocity is negative, the acceleration will be as well.)

C > —> > > > >
Figure 2.17 Car C has a constant speed.
Because the positive direction is considered to the right of the paper, Car C is moving with a positive velocity. Because all

arrows are of the same length, this car is not changing its speed. As a result, its change in velocity is zero, and its
acceleration must be zero as well.

D « -+ - +

Figure 2.18 Car D is speeding up in the opposite direction of Cars A, B, C.

Because the car is moving opposite to the positive direction, Car D is moving with a negative velocity. Because it is speeding
up while moving in a negative direction, its acceleration is negative as well.

E < < + -

Figure 2.19 Car E is slowing down in the same direction as Car D and opposite of Cars A, B, C.

Because it is moving opposite to the positive direction, Car E is moving with a negative velocity as well. However, because it
is slowing down while moving in a negative direction, its acceleration is actually positive. As in example B, this may be more
easily understood in a mathematical sense. The car is originally moving with a large negative velocity (=25 m/s) but slows to
a final velocity that is less negative (-5 m/s). This change in velocity, from —25 m/s to -5 m/s, is actually a positive change (

VE— V= — 5m/s — — 25 m/s of 20 m/s. Because the change in velocity is positive, the acceleration must also be

positive.

Making Connection - lllustrative Example

The three graphs below are labeled A, B, and C. Each one represents the position of a moving object plotted against time.



46 Chapter 2 | Kinematics

Position
Position

Time Time

Position

Time
Figure 2.20 Three position and time graphs: A, B, and C.

As we did in the previous example, let's consider the acceleration and velocity of each object in terms of its direction of
travel.

Position

Time
Figure 2.21 Graph A of Position (y axis) vs. Time (x axis).

Object A is continually increasing its position in the positive direction. As a result, its velocity is considered positive.
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ition

Pos

Time
Figure 2.22 Breakdown of Graph A into two separate sections.

During the first portion of time (shaded grey) the position of the object does not change much, resulting in a small positive
velocity. During a later portion of time (shaded green) the position of the object changes more, resulting in a larger positive
velocity. Because this positive velocity is increasing over time, the acceleration of the object is considered positive.

ition

Pos

Time
Figure 2.23 Graph B of Position (y axis) vs. Time (x axis).

As in case A, Object B is continually increasing its position in the positive direction. As a result, its velocity is considered
positive.

ition

Pos

Time
Figure 2.24 Breakdown of Graph B into two separate sections.

During the first portion of time (shaded grey) the position of the object changes a large amount, resulting in a large positive
velocity. During a later portion of time (shaded green) the position of the object does not change as much, resulting in a
smaller positive velocity. Because this positive velocity is decreasing over time, the acceleration of the object is considered
negative.
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ition

Pos

Time
Figure 2.25 Graph C of Position (y axis) vs. Time (x axis).

Object C is continually decreasing its position in the positive direction. As a result, its velocity is considered negative.

ition

Pos

Time
Figure 2.26 Breakdown of Graph C into two separate sections.

During the first portion of time (shaded grey) the position of the object does not change a large amount, resulting in a small
negative velocity. During a later portion of time (shaded green) the position of the object changes a much larger amount,
resulting in a larger negative velocity. Because the velocity of the object is becoming more negative during the time period,
the change in velocity is negative. As a result, the object experiences a negative acceleration.

Example 2.1 Calculating Acceleration: A Racehorse Leaves the Gate

A racehorse coming out of the gate accelerates from rest to a velocity of 15.0 m/s due west in 1.80 s. What is its average
acceleration?

Figure 2.27 (credit: Jon Sullivan, PD Photo.org)

Strategy
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First we draw a sketch and assign a coordinate system to the problem. This is a simple problem, but it always helps to
visualize it. Notice that we assign east as positive and west as negative. Thus, in this case, we have negative velocity.

a=7 N {+3)
.‘—.
il W (—x) E(+x)
vy = 0
ve= —15.0 m/s S (—y)

Figure 2.28
We can solve this problem by identifying Av and At from the given information and then calculating the average

o - _ Ay _ Yt~ Vo
acceleration directly from the equation a = 5= = .
At =1y
Solution

1. Identify the knowns. vy =0, v¢ = —15.0 m/s (the minus sign indicates direction toward the west), Az = 1.80s.

2. Find the change in velocity. Since the horse is going from zero to — 15.0 m/s , its change in velocity equals its final
velocity: Ay =vy=—15.0m/s.

3. Plug in the known values ( Av and At) and solve for the unknown a .

- _Av_ —150m/s _ _ 2 (2.11)
a=A"= "T80s 8.33 m/s”.

Discussion

The minus sign for acceleration indicates that acceleration is toward the west. An acceleration of 8.33 m/s2 due west
means that the horse increases its velocity by 8.33 m/s due west each second, that is, 8.33 meters per second per second,

which we write as 8.33 m/s2 . This is truly an average acceleration, because the ride is not smooth. We shall see later that
an acceleration of this magnitude would require the rider to hang on with a force nearly equal to his weight.

Instantaneous Acceleration

Instantaneous acceleration a, or the acceleration at a specific instant in time, is obtained by the same process as discussed
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for instantaneous velocity in Time, Velocity, and Speed—that is, by considering an infinitesimally small interval of time. How do

we find instantaneous acceleration using only algebra? The answer is that we choose an average acceleration that is

representative of the motion. Figure 2.29 shows graphs of instantaneous acceleration versus time for two very different motions.

In Figure 2.29(a), the acceleration varies slightly and the average over the entire interval is nearly the same as the
instantaneous acceleration at any time. In this case, we should treat this motion as if it had a constant acceleration equal to the

average (in this case about 1.8 m/s2 ). In Figure 2.29(b), the acceleration varies drastically over time. In such situations it is
best to consider smaller time intervals and choose an average acceleration for each. For example, we could consider motion

over the time intervals from 0 to 1.0 s and from 1.0 to 3.0 s as separate motions with accelerations of +3.0 m/s? and

—2.0m/s?, respectively.
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A
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Figure 2.29 Graphs of instantaneous acceleration versus time for two different one-dimensional motions. (a) Here acceleration varies only slightly and
is always in the same direction, since it is positive. The average over the interval is nearly the same as the acceleration at any given time. (b) Here the
acceleration varies greatly, perhaps representing a package on a post office conveyor belt that is accelerated forward and backward as it bumps along.
It is necessary to consider small time intervals (such as from 0 to 1.0 s) with constant or nearly constant acceleration in such a situation.

The next several examples consider the motion of the subway train shown in Figure 2.30. In (a) the shuttle moves to the right,
and in (b) it moves to the left. The examples are designed to further illustrate aspects of motion and to illustrate some of the
reasoning that goes into solving problems.

Y
: Ax = 2.00 km :
L ).l
1 1
____:_—_:_—_'-1- I
0 I I > (kam)
] 1
1xp = 4.70 km 1 xf = 6.70 km
(a)
¥ Ax’= —1.50km
< :
I i
I i
I i
v'_ I _:_'_ _:_ | _'_
. : > x (k
0 ! ! % (lem)
1x{ = 3.75 km 1x0=5.25 km
(b)

Figure 2.30 One-dimensional motion of a subway train considered in Example 2.2, Example 2.3, Example 2.4, Example 2.5, Example 2.6, and
Example 2.7. Here we have chosen the X -axis so that + means to the right and — means to the left for displacements, velocities, and accelerations.

(a) The subway train moves to the right from Xy to X¢ . Its displacement AX is +2.0 km. (b) The train moves to the left from x/o to x’f L lts

displacement Ax’ is —1.5 km . (Note that the prime symbol (') is used simply to distinguish between displacement in the two different situations.
The distances of travel and the size of the cars are on different scales to fit everything into the diagram.)

Example 2.2 Calculating Displacement: A Subway Train

What are the magnitude and sign of displacements for the motions of the subway train shown in parts (a) and (b) of Figure
2.30?

Strategy
A drawing with a coordinate system is already provided, so we don't need to make a sketch, but we should analyze it to
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make sure we understand what it is showing. Pay particular attention to the coordinate system. To find displacement, we use
the equation Ax = x; — xy . This is straightforward since the initial and final positions are given.

Solution
1. Identify the knowns. In the figure we see that x; = 6.70 km and xy = 4.70 km for part (a), and x’¢ = 3.75 km and
x'g=15.25km for part (b).
2. Solve for displacement in part (a).
Ax = x; — x = 6.70 km — 4.70 km= +2.00 km (2.12)
3. Solve for displacement in part (b).
Ax' =x';—x'(g=375km - 525km = — 1.50 km (2.13)

Discussion

The direction of the motion in (a) is to the right and therefore its displacement has a positive sign, whereas motion in (b) is to
the left and thus has a minus sign.

Example 2.3 Comparing Distance Traveled with Displacement: A Subway Train

What are the distances traveled for the motions shown in parts (a) and (b) of the subway train in Figure 2.30?
Strategy

To answer this question, think about the definitions of distance and distance traveled, and how they are related to
displacement. Distance between two positions is defined to be the magnitude of displacement, which was found in Example
2.2. Distance traveled is the total length of the path traveled between the two positions. (See Displacement.) In the case of
the subway train shown in Figure 2.30, the distance traveled is the same as the distance between the initial and final
positions of the train.

Solution

1. The displacement for part (a) was +2.00 km. Therefore, the distance between the initial and final positions was 2.00 km,
and the distance traveled was 2.00 km.

2. The displacement for part (b) was —1.5 km. Therefore, the distance between the initial and final positions was 1.50 km,
and the distance traveled was 1.50 km.
Discussion

Distance is a scalar. It has magnitude but no sign to indicate direction.

Example 2.4 Calculating Acceleration: A Subway Train Speeding Up

Suppose the train in Figure 2.30(a) accelerates from rest to 30.0 km/h in the first 20.0 s of its motion. What is its average
acceleration during that time interval?

Strategy
It is worth it at this point to make a simple sketch:

?‘J(}='OI:(I1’1/1'1 ¥

v = 30.0 km/h

Figure 2.31

This problem involves three steps. First we must determine the change in velocity, then we must determine the change in
time, and finally we use these values to calculate the acceleration.

Solution
1. Identify the knowns. v = 0 (the trains starts at rest), v¢ = 30.0 km/h, and At =20.0s.
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2. Calculate Av . Since the train starts from rest, its change in velocity is Ay= +30.0 km/h , where the plus sign means
velocity to the right.

3. Plug in known values and solve for the unknown, a .

Av _ +30.0 km/h (2.14)
At 20.0 s

4. Since the units are mixed (we have both hours and seconds for time), we need to convert everything into Sl units of
meters and seconds. (See Physical Quantities and Units for more guidance.)

_ (£30km/hY(103 mY_1h \_ 2 (2.15)
a ‘( 200 s )( 1 km )(3600 s)_ Sttt

a =

Discussion

The plus sign means that acceleration is to the right. This is reasonable because the train starts from rest and ends up with
a velocity to the right (also positive). So acceleration is in the same direction as the change in velocity, as is always the case.

Example 2.5 Calculate Acceleration: A Subway Train Slowing Down

Now suppose that at the end of its trip, the train in Figure 2.30(a) slows to a stop from a speed of 30.0 km/h in 8.00 s. What
is its average acceleration while stopping?

Strategy
vy = 30.0 km/h y
v¢ =0 km/h
- X
a=:
Figure 2.32

In this case, the train is decelerating and its acceleration is negative because it is toward the left. As in the previous
example, we must find the change in velocity and the change in time and then solve for acceleration.

Solution
1. Identify the knowns. v = 30.0 km/h, v = 0 km/h (the train is stopped, so its velocity is 0), and A =8.00s.

2. Solve for the change in velocity, Av .

Av =v; — vy =0-30.0 km/h = —30.0 km/h (2.16)
3. Plug in the knowns, Av and Af, and solve for a .
7 =Av _ =30.0 km/h (2.17)
At 8.00 s
4. Convert the units to meters and seconds.
- _ Av _ (=300 km/h 10> m _ 2 (2.18)
“‘At‘( 8.00 s (lkm )(3600s 1.04 m/s*.

Discussion

The minus sign indicates that acceleration is to the left. This sign is reasonable because the train initially has a positive
velocity in this problem, and a negative acceleration would oppose the motion. Again, acceleration is in the same direction
as the change in velocity, which is negative here. This acceleration can be called a deceleration because it has a direction
opposite to the velocity.

The graphs of position, velocity, and acceleration vs. time for the trains in Example 2.4 and Example 2.5 are displayed in Figure
2.33. (We have taken the velocity to remain constant from 20 to 40 s, after which the train decelerates.)

This OpenStax book is available for free at http://cnx.org/content/col11844/1.14



Chapter 2 | Kinematics

Figure 2.33 (a) Position of the train over time. Notice that the train's position changes slowly at the beginning of the journey, then more and more
quickly as it picks up speed. Its position then changes more slowly as it slows down at the end of the journey. In the middle of the journey, while the
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velocity remains constant, the position changes at a constant rate. (b) Velocity of the train over time. The train's velocity increases as it accelerates at
the beginning of the journey. It remains the same in the middle of the journey (where there is no acceleration). It decreases as the train decelerates at
the end of the journey. (c) The acceleration of the train over time. The train has positive acceleration as it speeds up at the beginning of the journey. It
has no acceleration as it travels at constant velocity in the middle of the journey. Its acceleration is negative as it slows down at the end of the journey.

Example 2.6 Calculating Average Velocity: The Subway Train

What is the average velocity of the train in part b of Example 2.2, and shown again below, if it takes 5.00 min to make its

trip?
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I I
0 : : )
| xf=375km 1 x5=5.25km
Figure 2.34
Strategy

Average velocity is displacement divided by time. It will be negative here, since the train moves to the left and has a negative
displacement.

Solution
1. Identify the knowns. x'; = 3.75 km, x'(g =5.25 km, At = 5.00 min.

2. Determine displacement, Ax’ . We found Ax’ to be — 1.5 km in Example 2.2.

3. Solve for average velocity.

g _ Ax’ _ =1.50km (2.19)
At 5.00 min
4. Convert units.
= _Ax _ (=1.50km)(60 min) _ _ (2.20)
b =R = (560 (SR = ~18.0 ket

Discussion

The negative velocity indicates motion to the left.

Example 2.7 Calculating Deceleration: The Subway Train

Finally, suppose the train in Figure 2.34 slows to a stop from a velocity of 20.0 km/h in 10.0 s. What is its average
acceleration?

Strategy
Once again, let's draw a sketch:

a="?*
Figure 2.35

As before, we must find the change in velocity and the change in time to calculate average acceleration.
Solution
1. Identify the knowns. vy = —20 km/h, v =0km/h, Ar=10.0s.

2. Calculate Av . The change in velocity here is actually positive, since

Ay = vi — vy = 0 — (=20 km/h)=+20 km/h. (2.21)
3. Solve for a .
7 = Av _ +20.0 km/h (2.22)
At 10.0s

4. Convert units.
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= (+2o.o km/h)(103 m)(3 lh S)= 0,556 m/s2 (2.23)

10.0's 1 km 3600

Discussion

The plus sign means that acceleration is to the right. This is reasonable because the train initially has a negative velocity (to
the left) in this problem and a positive acceleration opposes the motion (and so it is to the right). Again, acceleration is in the

same direction as the change in velocity, which is positive here. As in Example 2.5, this acceleration can be called a
deceleration since it is in the direction opposite to the velocity.

Sign and Direction

Perhaps the most important thing to note about these examples is the signs of the answers. In our chosen coordinate system,
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plus means the quantity is to the right and minus means it is to the left. This is easy to imagine for displacement and velocity. But
it is a little less obvious for acceleration. Most people interpret negative acceleration as the slowing of an object. This was not the

case in Example 2.7, where a positive acceleration slowed a negative velocity. The crucial distinction was that the acceleration

was in the opposite direction from the velocity. In fact, a negative acceleration will increase a negative velocity. For example, the

train moving to the left in Figure 2.34 is sped up by an acceleration to the left. In that case, both v and a are negative. The

plus and minus signs give the directions of the accelerations. If acceleration has the same sign as the velocity, the object is
speeding up. If acceleration has the opposite sign as the velocity, the object is slowing down.

An airplane lands on a runway traveling east. Describe its acceleration.

Solution
If we take east to be positive, then the airplane has negative acceleration, as it is accelerating toward the west. It is also
decelerating: its acceleration is opposite in direction to its velocity.

PhET Explorations: Moving Man Simulation

Learn about position, velocity, and acceleration graphs. Move the little man back and forth with the mouse and plot his
motion. Set the position, velocity, or acceleration and let the simulation move the man for you.

PhET Interactive Simulation

Figure 2.36 Moving Man (http:/icnx.org/content/m54772/1.3/moving-man_en.jar)

2.5 Motion Equations for Constant Acceleration in One Dimension

=5 == - o =}

Figure 2.37 Kinematic equations can help us describe and predict the motion of moving objects such as these kayaks racing in Newbury, England.

(credit: Barry Skeates, Flickr)
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Learning Objectives

By the end of this section, you will be able to:

¢ Calculate displacement of an object that is not accelerating, given initial position and velocity.

« Calculate final velocity of an accelerating object, given initial velocity, acceleration, and time.

« Calculate displacement and final position of an accelerating object, given initial position, initial velocity, time, and
acceleration.

The information presented in this section supports the following AP® learning objectives and science practices:

» 3.A.1.1 The student is able to express the motion of an object using narrative, mathematical, or graphical
representations. (S.P. 1.5, 2.1, 2.2)

» 3.A.1.3 The student is able to analyze experimental data describing the motion of an object and is able to express the
results of the analysis using narrative, mathematical, and graphical representations. (S.P. 5.1)

We might know that the greater the acceleration of, say, a car moving away from a stop sign, the greater the displacement in a
given time. But we have not developed a specific equation that relates acceleration and displacement. In this section, we develop
some convenient equations for kinematic relationships, starting from the definitions of displacement, velocity, and acceleration
already covered.

Notation: t, x, v, a

First, let us make some simplifications in notation. Taking the initial time to be zero, as if time is measured with a stopwatch, is a
great simplification. Since elapsed time is At = t; — 1y, taking 7y = 0 means that At = t¢, the final time on the stopwatch.

When initial time is taken to be zero, we use the subscript 0 to denote initial values of position and velocity. That is, x( is the
initial position and v, is the initial velocity. We put no subscripts on the final values. That is, 7 is the final time, x is the final

position, and Vv s the final velocity. This gives a simpler expression for elapsed time—now, Az = ¢. It also simplifies the
expression for displacement, which is now Ax = x — xy . Also, it simplifies the expression for change in velocity, which is now

Av = v — v . To summarize, using the simplified notation, with the initial time taken to be zero,

At =t (2.24)
Ax = x—1xg
Av = v—y

where the subscript 0 denotes an initial value and the absence of a subscript denotes a final value in whatever motion is under
consideration.

We now make the important assumption that acceleration is constant. This assumption allows us to avoid using calculus to find
instantaneous acceleration. Since acceleration is constant, the average and instantaneous accelerations are equal. That is,

a = a = constant, (2.25)

so we use the symbol a for acceleration at all times. Assuming acceleration to be constant does not seriously limit the situations
we can study nor degrade the accuracy of our treatment. For one thing, acceleration is constant in a great number of situations.
Furthermore, in many other situations we can accurately describe motion by assuming a constant acceleration equal to the
average acceleration for that motion. Finally, in motions where acceleration changes drastically, such as a car accelerating to top
speed and then braking to a stop, the motion can be considered in separate parts, each of which has its own constant
acceleration.

Solving for Displacement ( Ax ) and Final Position ( x ) from Average Velocity when Acceleration (a ) is Constant

To get our first two new equations, we start with the definition of average velocity:

7 = Ax (2.26)
At’
Substituting the simplified notation for Ax and At yields
. X—X
S = 0 (2.27)
t
Solving for x yields
X =xp+ vt (2.28)
where the average velocity is
_ VotV 2.29
V= 02 (constant a). (2.29)
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VotV
2
final velocities. For example, if you steadily increase your velocity (that is, with constant acceleration) from 30 to 60 km/h, then

- v+ Vv
your average velocity during this steady increase is 45 km/h. Using the equation v = 02 to check this, we see that

The equation v = reflects the fact that, when acceleration is constant, v is just the simple average of the initial and

VotV _ 30km/h + 60 km/h _ 45 1 /m (2.30)
2 2 >

V=

which seems logical.

Example 2.8 Calculating Displacement: How Far does the Jogger Run?

A jogger runs down a straight stretch of road with an average velocity of 4.00 m/s for 2.00 min. What is his final position,
taking his initial position to be zero?

Strategy
Draw a sketch.

v = 4.00 m/s y

Xq X
Figure 2.38
The final position x is given by the equation
X=xp+ vt (2.31)
To find x, we identify the values of x, v ,and t from the statement of the problem and substitute them into the equation.

Solution
1. Identify the knowns. v =4.00 m/s, At =2.00 min, and x,=0m.

2. Enter the known values into the equation.
x=xp+ vt =0+ (4.00 m/s)(120 s) = 480 m (2.32)

Discussion

Velocity and final displacement are both positive, which means they are in the same direction.

The equation x = x( + vt gives insight into the relationship between displacement, average velocity, and time. It shows, for
example, that displacement is a linear function of average velocity. (By linear function, we mean that displacement depends on

Vv rather than on v raised to some other power, such as v 2 When graphed, linear functions look like straight lines with a

constant slope.) On a car trip, for example, we will get twice as far in a given time if we average 90 km/h than if we average 45
km/h.
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Displacement vs. Velocity
for a given time, ¢

Displacement, x (m)

Average velocity, v (m/s)

Figure 2.39 There is a linear relationship between displacement and average velocity. For a given time 7, an object moving twice as fast as another
object will move twice as far as the other object.

Solving for Final Velocity

We can derive another useful equation by manipulating the definition of acceleration.

a=A4v (2.33)
At
Substituting the simplified notation for Av and At gives us
v—v
a=— 0 (constant a). (2.34)
Solving for v yields
v = v+ at (constant a). (2.35)

Example 2.9 Calculating Final Velocity: An Airplane Slowing Down after Landing

An airplane lands with an initial velocity of 70.0 m/s and then decelerates at 1.50 m/s? for 40.0's. What s its final velocity?

Strategy

Draw a sketch. We draw the acceleration vector in the direction opposite the velocity vector because the plane is
decelerating.

vy = 70.0 m/s g
-
a = —1.50 m/s2
x
Ur = &
Figure 2.40
Solution

1. Identify the knowns. vy = 70.0 m/s, a = —1.50 m/s>, 1 = 40.0s.
2. Identify the unknown. In this case, it is final velocity, vy .

3. Determine which equation to use. We can calculate the final velocity using the equation v = vy + ar .

This OpenStax book is available for free at http://cnx.org/content/col11844/1.14



Chapter 2 | Kinematics 59

4. Plug in the known values and solve.

v =vq+at =70.0 m/s + (—1.50 m/s2)(40.0 s) = 10.0 m/s (2.36)
0 (

Discussion

The final velocity is much less than the initial velocity, as desired when slowing down, but still positive. With jet engines,
reverse thrust could be maintained long enough to stop the plane and start moving it backward. That would be indicated by
a negative final velocity, which is not the case here.

= o w=700mls = S v=100m/s

«7 -

ey il
J J
- SR
a=-1.5m/s? a = —1.50 m/s?
t,=10 t=40.0s

Figure 2.41 The airplane lands with an initial velocity of 70.0 m/s and slows to a final velocity of 10.0 m/s before heading for the terminal. Note
that the acceleration is negative because its direction is opposite to its velocity, which is positive.

In addition to being useful in problem solving, the equation v = v+ at gives us insight into the relationships among velocity,
acceleration, and time. From it we can see, for example, that

« final velocity depends on how large the acceleration is and how long it lasts
« if the acceleration is zero, then the final velocity equals the initial velocity (v = v)), as expected (i.e., velocity is constant)

« if a is negative, then the final velocity is less than the initial velocity
(All of these observations fit our intuition, and it is always useful to examine basic equations in light of our intuition and
experiences to check that they do indeed describe nature accurately.)

Making Connections: Real-World Connection

Figure 2.42 The Space Shuttle Endeavor blasts off from the Kennedy Space Center in February 2010. (credit: Matthew Simantov, Flickr)

An intercontinental ballistic missile (ICBM) has a larger average acceleration than the Space Shuttle and achieves a greater
velocity in the first minute or two of flight (actual ICBM burn times are classified—short-burn-time missiles are more difficult
for an enemy to destroy). But the Space Shuttle obtains a greater final velocity, so that it can orbit the earth rather than come
directly back down as an ICBM does. The Space Shuttle does this by accelerating for a longer time.

Solving for Final Position When Velocity is Not Constant (a # 0)

We can combine the equations above to find a third equation that allows us to calculate the final position of an object
experiencing constant acceleration. We start with

vV =vqy+at. (2.37)
Adding vy to each side of this equation and dividing by 2 gives

vot+v _ 1 (2.38)
5 =Y + 2at.
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. VotV - )
Since ) = v for constant acceleration, then
vV =vy+ Lar. (2.39)
2
Now we substitute this expression for v into the equation for displacement, x = Xo+ vt,yielding
x=xy+vot+ %atz (constant a). 220

Example 2.10 Calculating Displacement of an Accelerating Object: Dragsters

Dragsters can achieve average accelerations of 26.0 m/s? . Suppose such a dragster accelerates from rest at this rate for
5.56 s. How far does it travel in this time?

Figure 2.43 U.S. Army Top Fuel pilot Tony “The Sarge” Schumacher begins a race with a controlled burnout. (credit: Lt. Col. William Thurmond.
Photo Courtesy of U.S. Army.)

Strategy
Draw a sketch.

o —t
Il

Xp
a= 26.0 m/s?

Figure 2.44

We are asked to find displacement, which is x if we take x to be zero. (Think about it like the starting line of a race. It can

be anywhere, but we call it 0 and measure all other positions relative to it.) We can use the equation x = x+ vyt + lat2

2
once we identify v, a,and ¢ from the statement of the problem.
Solution
1. Identify the knowns. Starting from rest means that vy = 0, a is given as 26.0 m/s? and ¢ is given as 5.56 s.
2. Plug the known values into the equation to solve for the unknown Xx :

X =Xxg+vol+ %atz. (zad)

Since the initial position and velocity are both zero, this simplifies to

1

P fatz‘ (2.42)

Substituting the identified values of a and ¢ gives
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x=1{26.0 m/s?)5.56 )7, (2.43)
yielding

x =402 m. (2.44)
Discussion

If we convert 402 m to miles, we find that the distance covered is very close to one quarter of a mile, the standard distance
for drag racing. So the answer is reasonable. This is an impressive displacement in only 5.56 s, but top-notch dragsters can
do a quarter mile in even less time than this.

What else can we learn by examining the equation x = xy + vyt + %atz? We see that:

« displacement depends on the square of the elapsed time when acceleration is not zero. In Example 2.10, the dragster
covers only one fourth of the total distance in the first half of the elapsed time

- if acceleration is zero, then the initial velocity equals average velocity (vg = v )and x = xq+ vof + %at2 becomes

X =Xqg+ Vot
Solving for Final Velocity when Velocity Is Not Constant (a # 0)

A fourth useful equation can be obtained from another algebraic manipulation of previous equations.

If we solve v = v+ at for ¢, we get

= Y=V (2.45)
=—10

L. ) - VO +v . _ -
Substituting thisand v = 3 into x = xg+ vi,we get

2

vZ = v3 + 2a(x — x() (constanta). (2.46)

Example 2.11 Calculating Final Velocity: Dragsters

Calculate the final velocity of the dragster in Example 2.10 without using information about time.
Strategy

Draw a sketch.

0]

Figure 2.45

The equation V2= v% + 2a(x — xy) is ideally suited to this task because it relates velocities, acceleration, and
displacement, and no time information is required.

Solution

1. Identify the known values. We know that v, = 0, since the dragster starts from rest. Then we note that

x —xo =402 m (this was the answer in Example 2.10). Finally, the average acceleration was given to be
a=26.0m/s>.
2. Plug the knowns into the equation v2 = v% + 2a(x — x() and solve for v.

v? = 0+ 2(26.0 m/s?)(402 m). (247)

Thus



62 Chapter 2 | Kinematics

vZ2 =2.09%x10% m2/s2. (2.48)

To get v, we take the square root:

v = 12.09%10% m2/s2 = 145 m/s. (2.49)

Discussion

145 m/s is about 522 km/h or about 324 mi/h, but even this breakneck speed is short of the record for the quarter mile. Also,
note that a square root has two values; we took the positive value to indicate a velocity in the same direction as the
acceleration.

2

An examination of the equation v = v(z) + 2a(x — x() can produce further insights into the general relationships among

physical quantities:

¢ The final velocity depends on how large the acceleration is and the distance over which it acts
« For a fixed deceleration, a car that is going twice as fast doesn't simply stop in twice the distance—it takes much further to
stop. (This is why we have reduced speed zones near schools.)

Putting Equations Together

In the following examples, we further explore one-dimensional motion, but in situations requiring slightly more algebraic
manipulation. The examples also give insight into problem-solving techniques. The box below provides easy reference to the
equations needed.

Summary of Kinematic Equations (constant a )

X=xq+ vt (2.50)

o vtV (2.51)
-2

v=vgt+at (2.52)

X =xo+ vt + %atz (2:53)

2 (2.54)

Ve = v% + 2a(x — xq)

Example 2.12 Calculating Displacement: How Far Does a Car Go When Coming to a Halt?

On dry concrete, a car can decelerate at a rate of 7.00 m/s? , Whereas on wet concrete it can decelerate at only

5.00 m/s2 . Find the distances necessary to stop a car moving at 30.0 m/s (about 110 km/h) (a) on dry concrete and (b) on

wet concrete. (c) Repeat both calculations, finding the displacement from the point where the driver sees a traffic light turn
red, taking into account his reaction time of 0.500 s to get his foot on the brake.

Strategy
Draw a sketch.

vo = 30.0 m/s ve = 0 m/s

dgry = —7.00 m/s?
Ayer = —5.00 m/s?

Figure 2.46

In order to determine which equations are best to use, we need to list all of the known values and identify exactly what we
need to solve for. We shall do this explicitly in the next several examples, using tables to set them off.
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Solution for (a)

1. Identify the knowns and what we want to solve for. We know that vy =30.0m/s; v =0; a = —7.00 m/s? (ais
negative because it is in a direction opposite to velocity). We take x(, to be 0. We are looking for displacement Ax , or
X — XO 5

2. Identify the equation that will help up solve the problem. The best equation to use is

2

Vo= v% + 2a(x — xq). (2.55)

This equation is best because it includes only one unknown, x . We know the values of all the other variables in this
equation. (There are other equations that would allow us to solve for x, but they require us to know the stopping time, ¢,
which we do not know. We could use them but it would entail additional calculations.)

3. Rearrange the equation to solve for x .

v? v} (2.56)
X—Xg= T
4. Enter known values.
r— 0= 02=(30.0m/s)? @)
2(~7.00 m/s?)
Thus,
Xx = 64.3 m on dry concrete. (2.58)

Solution for (b)
This part can be solved in exactly the same manner as Part A. The only difference is that the decelerationis — 5.00 m/s2 .
The result is

Xwer = 90.0 m on wet concrete. (2.59)

Solution for (c)

Once the driver reacts, the stopping distance is the same as it is in Parts A and B for dry and wet concrete. So to answer
this question, we need to calculate how far the car travels during the reaction time, and then add that to the stopping time. It
is reasonable to assume that the velocity remains constant during the driver's reaction time.

1. Identify the knowns and what we want to solve for. We know that v = 30.0 m/S; 7 c,cion = 0-5008 5 @penction =0
We take X( _ reaction 0 b€ 0. We are looking for X ., tion -
2. Identify the best equation to use.
X =Xxg+ vt works well because the only unknown value is x , which is what we want to solve for.
3. Plug in the knowns to solve the equation.
x =0+ (30.0 m/s)(0.500 s) = 15.0 m. (2.60)

This means the car travels 15.0 m while the driver reacts, making the total displacements in the two cases of dry and wet
concrete 15.0 m greater than if he reacted instantly.

4. Add the displacement during the reaction time to the displacement when braking.
Xbraking + Xreaction = ¥total (2.61)

a. 64.3m+ 15.0 m=79.3 mwhen dry
b. 90.0 m + 15.0 m = 105 m when wet

63
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64.3m
v 90.0m

wet

Reaction

. [
time
: 79.3m ‘d B
‘ ry
: 105m

_——— wet -
T | | | | | | | | >

0 15 50 100

Position x (m)

Figure 2.47 The distance necessary to stop a car varies greatly, depending on road conditions and driver reaction time. Shown here are the
braking distances for dry and wet pavement, as calculated in this example, for a car initially traveling at 30.0 m/s. Also shown are the total
distances traveled from the point where the driver first sees a light turn red, assuming a 0.500 s reaction time.

Discussion

The displacements found in this example seem reasonable for stopping a fast-moving car. It should take longer to stop a car
on wet rather than dry pavement. It is interesting that reaction time adds significantly to the displacements. But more
important is the general approach to solving problems. We identify the knowns and the quantities to be determined and then
find an appropriate equation. There is often more than one way to solve a problem. The various parts of this example can in
fact be solved by other methods, but the solutions presented above are the shortest.

Example 2.13 Calculating Time: A Car Merges into Traffic

Suppose a car merges into freeway traffic on a 200-m-long ramp. If its initial velocity is 10.0 m/s and it accelerates at
2.00 m/s> , how long does it take to travel the 200 m up the ramp? (Such information might be useful to a traffic engineer.)

Strategy
Draw a sketch.

t=1?
| |
| |
x =0 x=200m
vo = 10.0 m/s v="7:
a = 2.00 m/s?
_)..

Figure 2.48

We are asked to solve for the time 7. As before, we identify the known quantities in order to choose a convenient physical
relationship (that is, an equation with one unknown, ).

Solution

1. Identify the knowns and what we want to solve for. We know that v = 10 m/s; a = 2.00 m/s?;and x =200 m.

2. We need to solve for 7. Choose the best equation. x = xg + vyt + L4r? works best because the only unknown in the

2

equation is the variable ¢ for which we need to solve.
3. We will need to rearrange the equation to solve for 7. In this case, it will be easier to plug in the knowns first.

200 m = 0 m + (10.0 m/s) + %(2.00 m/s?)r? )

4. Simplify the equation. The units of meters (m) cancel because they are in each term. We can get the units of seconds (s)
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to cancel by taking # = ¢ s, where ¢ is the magnitude of time and s is the unit. Doing so leaves
200 = 107 + 1%, s

5. Use the quadratic formula to solve for ¢.
(a) Rearrange the equation to get O on one side of the equation.

12 4101 — 200 = 0 &)
This is a quadratic equation of the form

at> +bt+c =0, (2.65)

where the constants are a = 1.00, b = 10.0, and ¢ = —200.

(b) Its solutions are given by the quadratic formula:

_ —b+ b2 —4ac (2.66)

! 2a
This yields two solutions for ¢, which are
t = 10.0 and—20.0. (2.67)
In this case, then, the time is ¢ = ¢ in seconds, or
t =10.0 s and — 20.0 s. (2.68)

A negative value for time is unreasonable, since it would mean that the event happened 20 s before the motion began. We
can discard that solution. Thus,

t=10.0s. (2.69)

Discussion

Whenever an equation contains an unknown squared, there will be two solutions. In some problems both solutions are
meaningful, but in others, such as the above, only one solution is reasonable. The 10.0 s answer seems reasonable for a
typical freeway on-ramp.

With the basics of kinematics established, we can go on to many other interesting examples and applications. In the process of
developing kinematics, we have also glimpsed a general approach to problem solving that produces both correct answers and

insights into physical relationships. Problem-Solving Basics discusses problem-solving basics and outlines an approach that

will help you succeed in this invaluable task.

Making Connections: Take-Home Experiment—Breaking News

We have been using Sl units of meters per second squared to describe some examples of acceleration or deceleration of
cars, runners, and trains. To achieve a better feel for these numbers, one can measure the braking deceleration of a car
doing a slow (and safe) stop. Recall that, for average acceleration, @ = Av/ At . While traveling in a car, slowly apply the

brakes as you come up to a stop sign. Have a passenger note the initial speed in miles per hour and the time taken (in
seconds) to stop. From this, calculate the deceleration in miles per hour per second. Convert this to meters per second
squared and compare with other decelerations mentioned in this chapter. Calculate the distance traveled in braking.

A manned rocket accelerates at a rate of 20 m/s> during launch. How long does it take the rocket reach a velocity of 400
m/s?

Solution
To answer this, choose an equation that allows you to solve for time ¢, givenonly a, vy, and v.

Vv =vg+at (2.70)

Rearrange to solve for 7.

t=V2V=4001212)/Sm702m/S=20S (2.71)
S
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2.6 Problem-Solving Basics for One Dimensional Kinematics

Learning Objectives

By the end of this section, you will be able to:

* Apply problem-solving steps and strategies to solve problems of one-dimensional kinematics.
* Apply strategies to determine whether or not the result of a problem is reasonable, and if not, determine the cause.

Problem-solving skills are obviously essential to success in a quantitative course in physics. More importantly, the ability to apply
broad physical principles, usually represented by equations, to specific situations is a very powerful form of knowledge. It is much
more powerful than memorizing a list of facts. Analytical skills and problem-solving abilities can be applied to new situations,
whereas a list of facts cannot be made long enough to contain every possible circumstance. Such analytical skills are useful both
for solving problems in this text and for applying physics in everyday and professional life.

Problem-Solving Steps

While there is no simple step-by-step method that works for every problem, the following general procedures facilitate problem
solving and make it more meaningful. A certain amount of creativity and insight is required as well.

Step 1

Examine the situation to determine which physical principles are involved. It often helps to draw a simple sketch at the outset.
You will also need to decide which direction is positive and note that on your sketch. Once you have identified the physical
principles, it is much easier to find and apply the equations representing those principles. Although finding the correct equation is
essential, keep in mind that equations represent physical principles, laws of nature, and relationships among physical quantities.
Without a conceptual understanding of a problem, a numerical solution is meaningless.

Step 2

Make a list of what is given or can be inferred from the problem as stated (identify the knowns). Many problems are stated very
succinctly and require some inspection to determine what is known. A sketch can also be very useful at this point. Formally
identifying the knowns is of particular importance in applying physics to real-world situations. Remember, “stopped” means
velocity is zero, and we often can take initial time and position as zero.

Step 3

Identify exactly what needs to be determined in the problem (identify the unknowns). In complex problems, especially, it is not
always obvious what needs to be found or in what sequence. Making a list can help.

Step 4

Find an equation or set of equations that can help you solve the problem. Your list of knowns and unknowns can help here. It is
easiest if you can find equations that contain only one unknown—that is, all of the other variables are known, so you can easily
solve for the unknown. If the equation contains more than one unknown, then an additional equation is needed to solve the
problem. In some problems, several unknowns must be determined to get at the one needed most. In such problems it is
especially important to keep physical principles in mind to avoid going astray in a sea of equations. You may have to use two (or
more) different equations to get the final answer.

Step 5

Substitute the knowns along with their units into the appropriate equation, and obtain numerical solutions complete with units.
This step produces the numerical answer; it also provides a check on units that can help you find errors. If the units of the
answer are incorrect, then an error has been made. However, be warned that correct units do not guarantee that the numerical
part of the answer is also correct.
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Step 6

Check the answer to see if it is reasonable: Does it make sense? This final step is extremely important—the goal of physics is to
accurately describe nature. To see if the answer is reasonable, check both its magnitude and its sign, in addition to its units. Your
judgment will improve as you solve more and more physics problems, and it will become possible for you to make finer and finer
judgments regarding whether nature is adequately described by the answer to a problem. This step brings the problem back to
its conceptual meaning. If you can judge whether the answer is reasonable, you have a deeper understanding of physics than
just being able to mechanically solve a problem.

When solving problems, we often perform these steps in different order, and we also tend to do several steps simultaneously.
There is no rigid procedure that will work every time. Creativity and insight grow with experience, and the basics of problem
solving become almost automatic. One way to get practice is to work out the text's examples for yourself as you read. Another is
to work as many end-of-section problems as possible, starting with the easiest to build confidence and progressing to the more
difficult. Once you become involved in physics, you will see it all around you, and you can begin to apply it to situations you
encounter outside the classroom, just as is done in many of the applications in this text.

Unreasonable Results

Physics must describe nature accurately. Some problems have results that are unreasonable because one premise is
unreasonable or because certain premises are inconsistent with one another. The physical principle applied correctly then

produces an unreasonable result. For example, if a person starting a foot race accelerates at 0.40 m/s? for 100 s, his final

speed will be 40 m/s (about 150 km/h)—clearly unreasonable because the time of 100 s is an unreasonable premise. The
physics is correct in a sense, but there is more to describing nature than just manipulating equations correctly. Checking the
result of a problem to see if it is reasonable does more than help uncover errors in problem solving—it also builds intuition in
judging whether nature is being accurately described.

Use the following strategies to determine whether an answer is reasonable and, if it is not, to determine what is the cause.
Step 1
Solve the problem using strategies as outlined and in the format followed in the worked examples in the text. In the example
given in the preceding paragraph, you would identify the givens as the acceleration and time and use the equation below to find
the unknown final velocity. That is,

v=vo+at=0+(0.40m/s)(100 s) = 40 my/s. (272)
Step 2

Check to see if the answer is reasonable. |s it too large or too small, or does it have the wrong sign, improper units, ...? In this
case, you may need to convert meters per second into a more familiar unit, such as miles per hour.

() B N SN e ) = 89 mph .

This velocity is about four times greater than a person can run—sao it is too large.
Step 3

If the answer is unreasonable, look for what specifically could cause the identified difficulty. In the example of the runner, there
are only two assumptions that are suspect. The acceleration could be too great or the time too long. First look at the acceleration

and think about what the number means. If someone accelerates at 0.40 m/s2 , their velocity is increasing by 0.4 m/s each
second. Does this seem reasonable? If so, the time must be too long. It is not possible for someone to accelerate at a constant

rate of 0.40 m/s? for 100 s (almost two minutes).

2.7 Falling Objects

Learning Objectives

By the end of this section, you will be able to:

» Describe the effects of gravity on objects in motion.
» Describe the motion of objects that are in free fall.
» Calculate the position and velocity of objects in free fall.

The information presented in this section supports the following AP® learning objectives and science practices:

* 3.A.1.1 The student is able to express the motion of an object using narrative, mathematical, or graphical
representations. (S.P. 1.5, 2.1, 2.2)

* 3.A.1.2 The student is able to design an experimental investigation of the motion of an object. (S.P. 4.2)

* 3.A.1.3 The student is able to analyze experimental data describing the motion of an object and is able to express the
results of the analysis using narrative, mathematical, and graphical representations. (S.P. 5.1)

Falling objects form an interesting class of motion problems. For example, we can estimate the depth of a vertical mine shaft by
dropping a rock into it and listening for the rock to hit the bottom. By applying the kinematics developed so far to falling objects,
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we can examine some interesting situations and learn much about gravity in the process.
Gravity

The most remarkable and unexpected fact about falling objects is that, if air resistance and friction are negligible, then in a given
location all objects fall toward the center of Earth with the same constant acceleration, independent of their mass. This
experimentally determined fact is unexpected, because we are so accustomed to the effects of air resistance and friction that we
expect light objects to fall slower than heavy ones.

d

,E‘ é 4

In air In a vacuum In a vacuum (the hard way)

Figure 2.50 A hammer and a feather will fall with the same constant acceleration if air resistance is considered negligible. This is a general
characteristic of gravity not unique to Earth, as astronaut David R. Scott demonstrated on the Moon in 1971, where the acceleration due to gravity is

only 1.67 m/sZ.

In the real world, air resistance can cause a lighter object to fall slower than a heavier object of the same size. A tennis ball will
reach the ground after a hard baseball dropped at the same time. (It might be difficult to observe the difference if the height is not
large.) Air resistance opposes the motion of an object through the air, while friction between objects—such as between clothes
and a laundry chute or between a stone and a pool into which it is dropped—also opposes motion between them. For the ideal
situations of these first few chapters, an object falling without air resistance or friction is defined to be in free-fall.

The force of gravity causes objects to fall toward the center of Earth. The acceleration of free-falling objects is therefore called
the acceleration due to gravity. The acceleration due to gravity is constant, which means we can apply the kinematics
equations to any falling object where air resistance and friction are negligible. This opens a broad class of interesting situations
to us. The acceleration due to gravity is so important that its magnitude is given its own symbol, g . Itis constant at any given

location on Earth and has the average value

g = 9.80 m/s’. 2.74)

Although g varies from 9.78 m/s? to 9.83 m/s? , depending on latitude, altitude, underlying geological formations, and local

topography, the average value of 9.80 m/s? will be used in this text unless otherwise specified. The direction of the

acceleration due to gravity is downward (towards the center of Earth). In fact, its direction defines what we call vertical. Note that
whether the acceleration a in the kinematic equations has the value +g or —g depends on how we define our coordinate

system. If we define the upward direction as positive, then a = —g = —9.80 m/s2 , and if we define the downward direction as
positive, then a = g = 9.80 m/s?.

One-Dimensional Motion Involving Gravity

The best way to see the basic features of motion involving gravity is to start with the simplest situations and then progress toward
more complex ones. So we start by considering straight up and down motion with no air resistance or friction. These
assumptions mean that the velocity (if there is any) is vertical. If the object is dropped, we know the initial velocity is zero. Once
the object has left contact with whatever held or threw it, the object is in free-fall. Under these circumstances, the motion is one-
dimensional and has constant acceleration of magnitude g . We will also represent vertical displacement with the symbol y and

use x for horizontal displacement.

Kinematic Equations for Objects in Free-Fall where Acceleration = -g

V=vy— gt (2.75)
2.76

¥ = Yo+ o — 38t )
2 (2.77)

v =v3 - 2g(y - o)

Example 2.14 Calculating Position and Velocity of a Falling Object: A Rock Thrown Upward

A person standing on the edge of a high cliff throws a rock straight up with an initial velocity of 13.0 m/s. The rock misses the
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edge of the cliff as it falls back to Earth. Calculate the position and velocity of the rock 1.00 s, 2.00 s, and 3.00 s after it is
thrown, neglecting the effects of air resistance.

Strategy
Draw a sketch.

vy =13.0 m/s i 2 = =9.8 m/s?

Figure 2.51

We are asked to determine the position y at various times. It is reasonable to take the initial position y( to be zero. This

problem involves one-dimensional motion in the vertical direction. We use plus and minus signs to indicate direction, with up
being positive and down negative. Since up is positive, and the rock is thrown upward, the initial velocity must be positive
too. The acceleration due to gravity is downward, so a is negative. It is crucial that the initial velocity and the acceleration

due to gravity have opposite signs. Opposite signs indicate that the acceleration due to gravity opposes the initial motion
and will slow and eventually reverse it.

Since we are asked for values of position and velocity at three times, we will refer to these as y; and v;; y, and v, ; and

y3 and vj3.

Solution for Position y,

1. Identify the knowns. We know that yy=0; vy =13.0m/s; a = —g = —-9.80 m/s%;and 1= 1.00s.

2. ldentify the best equation to use. We willuse y = yg+ vyt + %at2 because it includes only one unknown, y (or y,
here), which is the value we want to find.
3. Plug in the known values and solve for y .

y=0+(13.0m/s)(1.005) + 3(~9.80 m/s>)(1.00 5)” = 8.10 m (278)

Discussion
The rock is 8.10 m above its starting point at # = 1.00 s, since Y1 > Yg - It could be moving up or down; the only way to

tell is to calculate v and find out if it is positive or negative.

Solution for Velocity v

1. Identify the knowns. We know that y5=0; vy =13.0m/s; a = —g = —9.80 m/s?; and ¢ = 1.00 s. We also know

from the solution above that y; = 8.10m .

2. Identify the best equation to use. The most straightforward is v = vy — gt (from v = v, + at, where

a = gravitational acceleration = —g).

3. Plug in the knowns and solve.

vy =vo— gt = 13.0 m/s — (9.80 m/s*)(1.00 s) = 3.20 m/s &)

Discussion

The positive value for v| means that the rock is still heading upward at # = 1.00 s . However, it has slowed from its original
13.0 m/s, as expected.

Solution for Remaining Times

The procedures for calculating the position and velocity at = 2.00 s and 3.00 s are the same as those above. The
results are summarized in Table 2.1 and illustrated in Figure 2.52.
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Table 2.1 Results
1.00 s 8.10 m 3.20 m/s —9.80 m/s?
2.00s 6.40 m —6.60 m/s —9.80 m/s?
3.00's —5.10m | —16.4m/s —9.80 m/s?2
Graphing the data helps us understand it more clearly.
Position vs. Time
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Figure 2.52 Vertical position, vertical velocity, and vertical acceleration vs. time for a rock thrown vertically up at the edge of a cliff. Notice that
velocity changes linearly with time and that acceleration is constant. Misconception Alert! Notice that the position vs. time graph shows vertical
position only. It is easy to get the impression that the graph shows some horizontal motion—the shape of the graph looks like the path of a
projectile. But this is not the case; the horizontal axis is time, not space. The actual path of the rock in space is straight up, and straight down.

Discussion

The interpretation of these results is important. At 1.00 s the rock is above its starting point and heading upward, since y;

and v are both positive. At 2.00 s, the rock is still above its starting point, but the negative velocity means it is moving

downward. At 3.00 s, both y3 and v3 are negative, meaning the rock is below its starting point and continuing to move
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downward. Notice that when the rock is at its highest point (at 1.5 s), its velocity is zero, but its acceleration is still

—9.80 m/s2 . Its acceleration is —9.80 m/s? for the whole trip—while it is moving up and while it is moving down. Note
that the values for y are the positions (or displacements) of the rock, not the total distances traveled. Finally, note that free-

fall applies to upward motion as well as downward. Both have the same acceleration—the acceleration due to gravity, which
remains constant the entire time. Astronauts training in the famous Vomit Comet, for example, experience free-fall while
arcing up as well as down, as we will discuss in more detail later.

Making Connections: Take-Home Experiment—Reaction Time

A simple experiment can be done to determine your reaction time. Have a friend hold a ruler between your thumb and index
finger, separated by about 1 cm. Note the mark on the ruler that is right between your fingers. Have your friend drop the ruler
unexpectedly, and try to catch it between your two fingers. Note the new reading on the ruler. Assuming acceleration is that
due to gravity, calculate your reaction time. How far would you travel in a car (moving at 30 m/s) if the time it took your foot
to go from the gas pedal to the brake was twice this reaction time?

Example 2.15 Calculating Velocity of a Falling Object: A Rock Thrown Down

What happens if the person on the cliff throws the rock straight down, instead of straight up? To explore this question,
calculate the velocity of the rock when it is 5.10 m below the starting point, and has been thrown downward with an initial
speed of 13.0 m/s.

Strategy
Draw a sketch.

vy = —13.0 m/s a=-9.8 m/s?

Figure 2.53

Since up is positive, the final position of the rock will be negative because it finishes below the starting pointat y, = 0.

Similarly, the initial velocity is downward and therefore negative, as is the acceleration due to gravity. We expect the final
velocity to be negative since the rock will continue to move downward.

Solution
1. Identify the knowns. y5=0; y; = —=5.10m; vg=—-13.0m/s; a=—-g =-9.80 m/s?.

2

2. Choose the kinematic equation that makes it easiest to solve the problem. The equation v= = v(z) + 2a(y — yq) works

well because the only unknown initis v . (We will plug y infor y.)

3. Enter the known values
v = (~13.0 m/s)? +2(~9.80 m/s*)(—5.10 m — 0 m) = 268.96 m*/s2, (2.80)

where we have retained extra significant figures because this is an intermediate result.
Taking the square root, and noting that a square root can be positive or negative, gives
v==+16.4 m/s. (2.81)

The negative root is chosen to indicate that the rock is still heading down. Thus,
v=—16.4 m/s. (2.82)

Discussion

Note that this is exactly the same velocity the rock had at this position when it was thrown straight upward with the same
initial speed. (See Example 2.14 and Figure 2.54(a).) This is not a coincidental result. Because we only consider the
acceleration due to gravity in this problem, the speed of a falling object depends only on its initial speed and its vertical
position relative to the starting point. For example, if the velocity of the rock is calculated at a height of 8.10 m above the
starting point (using the method from Example 2.14) when the initial velocity is 13.0 m/s straight up, a result of +3.20 m/s

is obtained. Here both signs are meaningful; the positive value occurs when the rock is at 8.10 m and heading up, and the
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negative value occurs when the rock is at 8.10 m and heading back down. It has the same speed but the opposite direction.
¥ = 810m —u/\

e 3 = 640 m

vy = 13 m/s

vy = —13 m/s
—_— 3 = —3.10 m ‘ \ = 3= —5.10m
v; = —16.4 m/s v = —16.4 mls

£ LI | 1

a b
Figure 2.54 (a) A p(er)son throws a rock straight up, as explored in Example 2.24). The arrows are velocity vectors at 0, 1.00, 2.00, and 3.00 s. (b)
A person throws a rock straight down from a cliff with the same initial speed as before, as in Example 2.15. Note that at the same distance below
the point of release, the rock has the same velocity in both cases.
Another way to look at it is this: In Example 2.14, the rock is thrown up with an initial velocity of 13.0 m/s . It rises and then
falls back down. When its position is y = 0 on its way back down, its velocity is —13.0 m/s . That is, it has the same
speed on its way down as on its way up. We would then expect its velocity at a position of y = —5.10 m to be the same
whether we have thrown it upwards at +13.0 m/s or thrown it downwards at —13.0 m/s . The velocity of the rock on its
way down from y = O is the same whether we have thrown it up or down to start with, as long as the speed with which it
was initially thrown is the same.

Example 2.16 Find g from Data on a Falling Object

The acceleration due to gravity on Earth differs slightly from place to place, depending on topography (e.g., whether you are
on a hill or in a valley) and subsurface geology (whether there is dense rock like iron ore as opposed to light rock like salt
beneath you.) The precise acceleration due to gravity can be calculated from data taken in an introductory physics
laboratory course. An object, usually a metal ball for which air resistance is negligible, is dropped and the time it takes to fall
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a known distance is measured. See, for example, Figure 2.55. Very precise results can be produced with this method if
sufficient care is taken in measuring the distance fallen and the elapsed time.

y (m) v (m/s) £(s)
0 0 0
-0.049 -0.98 (0.1l
-0.196 -1.96 0.2
—0.441 —2.94 0.3
—0.784 -3.92 0.4
-1.225 -4.90 0.5

Position vs. Time for Falling Sphere

Time # (s)
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T | | |
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T T | T T 1 T T T | T 1
= db ) 5
= g8
£ 2 sl
2 g
r ko
= =
s ] g s
6l p———————————2

Figure 2.55 Positions and velocities of a metal ball released from rest when air resistance is negligible. Velocity is seen to increase linearly with
time while displacement increases with time squared. Acceleration is a constant and is equal to gravitational acceleration.

Suppose the ball falls 1.0000 m in 0.45173 s. Assuming the ball is not affected by air resistance, what is the precise
acceleration due to gravity at this location?

Strategy

Draw a sketch.
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vg = 0 m/s a="?

Figure 2.56

We need to solve for acceleration a . Note that in this case, displacement is downward and therefore negative, as is
acceleration.

Solution
1. Identify the knowns. yj=0; y =-1.0000m; # =0.45173; vy =0.

2. Choose the equation that allows you to solve for a using the known values.

y =Yg+ vot + %atz i)
3. Substitute O for v(y and rearrange the equation to solve for a . Substituting 0 for v, yields
2 2.84
y=Yo+ %at 5 ( )
Solving for a gives
2(y — yo) (2.85)
a=——>"".
t
4. Substitute known values yields
— _ 2.86
4 = 2(=1.0000 m- 0) _ _98010 m/s2, (2.86)
(0.45173 s)
so, because a = —g with the directions we have chosen,
g = 9.8010 m/s>. (2.87)
Discussion

The negative value for a indicates that the gravitational acceleration is downward, as expected. We expect the value to be
somewhere around the average value of 9.80 m/s? ,s0 9.8010 m/s2 makes sense. Since the data going into the

calculation are relatively precise, this value for g is more precise than the average value of 9.80 m/s? ; it represents the
local value for the acceleration due to gravity.

Applying the Science Practices: Finding Acceleration Due to Gravity

While it is well established that the acceleration due to gravity is quite nearly 9.8 m/s? at all locations on Earth, you can verify
this for yourself with some basic materials.

Your task is to find the acceleration due to gravity at your location. Achieving an acceleration of precisely 9.8 m/s? will be
difficult. However, with good preparation and attention to detail, you should be able to get close. Before you begin working,
consider the following questions.

What measurements will you need to take in order to find the acceleration due to gravity?

What relationships and equations found in this chapter may be useful in calculating the acceleration?
What variables will you need to hold constant?

What materials will you use to record your measurements?

Upon completing these four questions, record your procedure. Once recorded, you may carry out the experiment. If you find
that your experiment cannot be carried out, you may revise your procedure.

Once you have found your experimental acceleration, compare it to the assumed value of 9.8 m/s?. If error exists, what were
the likely sources of this error? How could you change your procedure in order to improve the accuracy of your findings?
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A chunk of ice breaks off a glacier and falls 30.0 meters before it hits the water. Assuming it falls freely (there is no air
resistance), how long does it take to hit the water?
Solution
We know that initial position y = 0, final position y = —30.0m, and a = —g = —9.80 m/s” . We can then use the
equation y = yg + vof + %at2 to solve for ¢. Inserting a = —g , we obtain
y = 0+0— %gtz (2.88)
2
2 = y
¢ = sz L) H=300M) g 1252= 2475~ 2555

—9.80 m/s?

where we take the positive value as the physically relevant answer. Thus, it takes about 2.5 seconds for the piece of ice to
hit the water.

PhET Explorations: Equation Grapher

Learn about graphing polynomials. The shape of the curve changes as the constants are adjusted. View the curves for the
individual terms (e.g. y = bx) to see how they add to generate the polynomial curve.

PhET Interactive Simulation

Figure 2.57 Equation Grapher (http:/icnx.org/content/m54775/1.5/equation-grapher_en.jar)

2.8 Graphical Analysis of One Dimensional Motion

Learning Objectives

By the end of this section, you will be able to:

» Describe a straight-line graph in terms of its slope and y-intercept.

» Determine average velocity or instantaneous velocity from a graph of position vs. time.
» Determine average or instantaneous acceleration from a graph of velocity vs. time.

» Derive a graph of velocity vs. time from a graph of position vs. time.

» Derive a graph of acceleration vs. time from a graph of velocity vs. time.
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A graph, like a picture, is worth a thousand words. Graphs not only contain numerical information; they also reveal relationships

between physical quantities. This section uses graphs of displacement, velocity, and acceleration versus time to illustrate one-
dimensional kinematics.

Slopes and General Relationships

First note that graphs in this text have perpendicular axes, one horizontal and the other vertical. When two physical quantities are

plotted against one another in such a graph, the horizontal axis is usually considered to be an independent variable and the
vertical axis a dependent variable. If we call the horizontal axis the x -axis and the vertical axis the y -axis, as in Figure 2.58,

straight-line graph has the general form

a

y=mx+b. (2.89)

Here m is the slope, defined to be the rise divided by the run (as seen in the figure) of the straight line. The letter b is used for

the y-intercept, which is the point at which the line crosses the vertical axis.
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f/ y=mx+f)

Intercept

D

Figure 2.58 A straight-line graph. The equation for a straight line is y = mx + b .

Graph of Displacement vs. Time (a = 0, so v is constant)

Time is usually an independent variable that other quantities, such as displacement, depend upon. A graph of displacement
versus time would, thus, have x on the vertical axis and ¢ on the horizontal axis. Figure 2.59 is just such a straight-line graph.

It shows a graph of displacement versus time for a jet-powered car on a very flat dry lake bed in Nevada.
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Figure 2.59 Graph of displacement versus time for a jet-powered car on the Bonneville Salt Flats.

Using the relationship between dependent and independent variables, we see that the slope in the graph above is average
velocity v and the intercept is displacement at time zero—that is, X( - Substituting these symbols into y = mx + b gives

X=Vi+xg (2.90)
or
xX=xp+ vt (2.91)

Thus a graph of displacement versus time gives a general relationship among displacement, velocity, and time, as well as giving
detailed numerical information about a specific situation.

The Slope of x vs. t

The slope of the graph of displacement x vs. time ¢ is velocity v .

Ax
At

(2.92)

slope = =v

Notice that this equation is the same as that derived algebraically from other motion equations in Motion Equations for
Constant Acceleration in One Dimension.

From the figure we can see that the car has a displacement of 400 m at time 0.650 m at £ = 1.0 s, and so on. Its displacement at

times other than those listed in the table can be read from the graph; furthermore, information about its velocity and acceleration
can also be obtained from the graph.
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Example 2.17 Determining Average Velocity from a Graph of Displacement versus Time: Jet]

Find the average velocity of the car whose position is graphed in Figure 2.59.

Strategy

The slope of a graph of x vs. ¢ is average velocity, since slope equals rise over run. In this case, rise = change in
displacement and run = change in time, so that

Ax
At

Since the slope is constant here, any two points on the graph can be used to find the slope. (Generally speaking, it is most
accurate to use two widely separated points on the straight line. This is because any error in reading data from the graph is
proportionally smaller if the interval is larger.)

slope = = V. (2.93)

Solution

1. Choose two points on the line. In this case, we choose the points labeled on the graph: (6.4 s, 2000 m) and (0.50 s, 525
m). (Note, however, that you could choose any two points.)

2. Substitute the x and ¢ values of the chosen points into the equation. Remember in calculating change (A) we always

use final value minus initial value.

5 = Ax _ 2000m — 525 m (2.94)
At 6.4s—-050s °
yielding
v =250 m/s. (2.95)
Discussion

This is an impressively large land speed (900 km/h, or about 560 mi/h): much greater than the typical highway speed limit of
60 mi/h (27 m/s or 96 km/h), but considerably shy of the record of 343 m/s (1234 km/h or 766 mi/h) set in 1997.

Graphs of Motion when a is constant but a # 0

The graphs in Figure 2.60 below represent the motion of the jet-powered car as it accelerates toward its top speed, but only
during the time when its acceleration is constant. Time starts at zero for this motion (as if measured with a stopwatch), and the
displacement and velocity are initially 200 m and 15 m/s, respectively.

7
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Figure 2.60 Graphs of motion of a jet-powered car during the time span when its acceleration is constant. (a) The slope of an X vs. f graphis
velocity. This is shown at two points, and the instantaneous velocities obtained are plotted in the next graph. Instantaneous velocity at any point is the
slope of the tangent at that point. (b) The slope of the V vs. f graph is constant for this part of the motion, indicating constant acceleration. (c)

Acceleration has the constant value of 5.0 m/s2 over the time interval plotted.
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Figure 2.61 A U.S. Air Force jet car speeds down a track. (credit: Matt Trostle, Flickr)

The graph of displacement versus time in Figure 2.60(a) is a curve rather than a straight line. The slope of the curve becomes
steeper as time progresses, showing that the velocity is increasing over time. The slope at any point on a displacement-versus-
time graph is the instantaneous velocity at that point. It is found by drawing a straight line tangent to the curve at the point of
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interest and taking the slope of this straight line. Tangent lines are shown for two points in Figure 2.60(a). If this is done at every

point on the curve and the values are plotted against time, then the graph of velocity versus time shown in Figure 2.60(b) is
obtained. Furthermore, the slope of the graph of velocity versus time is acceleration, which is shown in Figure 2.60(c).

Example 2.18 Determining Instantaneous Velocity from the Slope at a Point: Jet Car

Calculate the velocity of the jet car at a time of 25 s by finding the slope of the x vs. ¢ graph in the graph below.

[
E t {()S) x2(g;)
i 5 | 338
< 10 | 600
E 15 | 988
S 20 | 1500
E. 25 | 2138
= 30 | 2900

0 T T T T T T
0 5 1015 20 25 30

Time, t (s)
Figure 2.62 The slope of an X vs.  graph is velocity. This is shown at two points. Instantaneous velocity at any point is the slope of the tangent
at that point.
Strategy

The slope of a curve at a point is equal to the slope of a straight line tangent to the curve at that point. This principle is
illustrated in Figure 2.62, where Q is the pointat =25 s..

Solution
1. Find the tangent line to the curve at t =25 's.

2. Determine the endpoints of the tangent. These correspond to a position of 1300 m at time 19 s and a position of 3120 m
at time 32 s.

3. Plug these endpoints into the equation to solve for the slope, v .

dlope = ve = 2¥Q _ (3120 m — 1300 m) (2.96)
PE=YQ= Ry T (B25-199)
Thus,
_1820m _ (2.97)
v =530 = 140 ms.

Discussion
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This is the value given in this figure's table for v at t = 25 s . The value of 140 m/s for vQ is plotted in Figure 2.62. The

entire graph of v vs. ¢ can be obtained in this fashion.

Carrying this one step further, we note that the slope of a velocity versus time graph is acceleration. Slope is rise divided by run;
ona v vs. t graph, rise = change in velocity Av and run = change in time At .

The Slope of v vs. t
The slope of a graph of velocity v vs. time ¢ is acceleration a.

—Av _ (2.98)
slope = A= @

Since the velocity versus time graph in Figure 2.60(b) is a straight line, its slope is the same everywhere, implying that
acceleration is constant. Acceleration versus time is graphed in Figure 2.60(c).

Additional general information can be obtained from Figure 2.62 and the expression for a straight line, y = mx + b .

In this case, the vertical axis y is V, the intercept b is v, the slope m is a, and the horizontal axis x is ¢ . Substituting
these symbols yields

Vv ="v,+at. (2.99)
A general relationship for velocity, acceleration, and time has again been obtained from a graph. Notice that this equation was
also derived algebraically from other motion equations in Motion Equations for Constant Acceleration in One Dimension.

It is not accidental that the same equations are obtained by graphical analysis as by algebraic techniques. In fact, an important
way to discover physical relationships is to measure various physical quantities and then make graphs of one quantity against
another to see if they are correlated in any way. Correlations imply physical relationships and might be shown by smooth graphs
such as those above. From such graphs, mathematical relationships can sometimes be postulated. Further experiments are then
performed to determine the validity of the hypothesized relationships.

Graphs of Motion Where Acceleration is Not Constant

Now consider the motion of the jet car as it goes from 165 m/s to its top velocity of 250 m/s, graphed in Figure 2.63. Time again
starts at zero, and the initial displacement and velocity are 2900 m and 165 m/s, respectively. (These were the final displacement

and velocity of the car in the motion graphed in Figure 2.60.) Acceleration gradually decreases from 5.0 m/s2 to zero when the

car hits 250 m/s. The slope of the x vs. t graph increases until £ = 55 s, after which time the slope is constant. Similarly,

velocity increases until 55 s and then becomes constant, since acceleration decreases to zero at 55 s and remains zero
afterward.
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Displacement, x (km)

(a)

Velocity, v (m/s)

(b)

Acceleration, a (m/s2)

(c)
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Figure 2.63 Graphs of motion of a jet-powered car as it reaches its top velocity. This motion begins where the motion in Figure 2.60 ends. (a) The
slope of this graph is velocity; it is plotted in the next graph. (b) The velocity gradually approaches its top value. The slope of this graph is acceleration;
it is plotted in the final graph. (c) Acceleration gradually declines to zero when velocity becomes constant.

Example 2.19 Calculating Acceleration from a Graph of Velocity versus Time

Calculate the acceleration of the jet car at a time of 25 s by finding the slope of the v vs. t graph in Figure 2.63(b).

Strategy

The slope of the curve at t = 25 s is equal to the slope of the line tangent at that point, as illustrated in Figure 2.63(b).

Solution

Determine endpoints of the tangent line from the figure, and then plug them into the equation to solve for slope, a .

slope =

Ay _ (260 m/s — 210 m/s)

Ar (51s—-1.05)

(2.100)
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a =300 — 1 052, (2.101)
50s

Discussion

Note that this value for a is consistent with the value plotted in Figure 2.63(c) at t = 25 s .

A graph of displacement versus time can be used to generate a graph of velocity versus time, and a graph of velocity versus time
can be used to generate a graph of acceleration versus time. We do this by finding the slope of the graphs at every point. If the
graph is linear (i.e., a line with a constant slope), it is easy to find the slope at any point and you have the slope for every point.
Graphical analysis of motion can be used to describe both specific and general characteristics of kinematics. Graphs can also be
used for other topics in physics. An important aspect of exploring physical relationships is to graph them and look for underlying
relationships.

A graph of velocity vs. time of a ship coming into a harbor is shown below. (a) Describe the motion of the ship based on the
graph. (b)What would a graph of the ship's acceleration look like?

Figure 2.64

Solution

(a) The ship moves at constant velocity and then begins to decelerate at a constant rate. At some point, its deceleration rate
decreases. It maintains this lower deceleration rate until it stops moving.

(b) A graph of acceleration vs. time would show zero acceleration in the first leg, large and constant negative acceleration in
the second leg, and constant negative acceleration.

a

Figure 2.65

acceleration: the rate of change in velocity; the change in velocity over time

acceleration due to gravity: acceleration of an object as a result of gravity

average acceleration: the change in velocity divided by the time over which it changes

average speed: distance traveled divided by time during which motion occurs

average velocity: displacement divided by time over which displacement occurs

deceleration: acceleration in the direction opposite to velocity; acceleration that results in a decrease in velocity

dependent variable: the variable that is being measured; usually plotted along the y -axis

displacement: the change in position of an object
distance: the magnitude of displacement between two positions

distance traveled: the total length of the path traveled between two positions
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elapsed time: the difference between the ending time and beginning time
free-fall: the state of movement that results from gravitational force only

independent variable: the variable that the dependent variable is measured with respect to; usually plotted along the x -axis

instantaneous acceleration: acceleration at a specific point in time

instantaneous speed: magnitude of the instantaneous velocity

instantaneous velocity: velocity at a specific instant, or the average velocity over an infinitesimal time interval
kinematics: the study of motion without considering its causes

model: simplified description that contains only those elements necessary to describe the physics of a physical situation
position: the location of an object at a particular time

scalar: a quantity that is described by magnitude, but not direction

slope: the difference in y -value (the rise) divided by the difference in x -value (the run) of two points on a straight line

time: change, or the interval over which change occurs
vector: a quantity that is described by both magnitude and direction

y-intercept: the y-value when x =0, or when the graph crosses the y -axis

Section Summary

2.1 Displacement
« Kinematics is the study of motion without considering its causes. In this chapter, it is limited to motion along a straight line,
called one-dimensional motion.
« Displacement is the change in position of an object.
« In symbols, displacement Ax is defined to be

Ax = x¢ — xg,
where X, is the initial position and x; is the final position. In this text, the Greek letter A (delta) always means “change

in” whatever quantity follows it. The Sl unit for displacement is the meter (m). Displacement has a direction as well as a
magnitude.

* When you start a problem, assign which direction will be positive.

« Distance is the magnitude of displacement between two positions.

« Distance traveled is the total length of the path traveled between two positions.

2.2 Vectors, Scalars, and Coordinate Systems
« A vector is any quantity that has magnitude and direction.
« A scalar is any quantity that has magnitude but no direction.
« Displacement and velocity are vectors, whereas distance and speed are scalars.
« In one-dimensional motion, direction is specified by a plus or minus sign to signify left or right, up or down, and the like.

2.3 Time, Velocity, and Speed
« Time is measured in terms of change, and its Sl unit is the second (s). Elapsed time for an event is

At =ty — 1,
where f; is the final time and ¢ is the initial time. The initial time is often taken to be zero, as if measured with a
stopwatch; the elapsed time is then just ¢ .
« Average velocity v is defined as displacement divided by the travel time. In symbols, average velocity is

5 =LAx _ X7 Xo
At =ty

« The Sl unit for velocity is m/s.

« Velocity is a vector and thus has a direction.

« Instantaneous velocity v is the velocity at a specific instant or the average velocity for an infinitesimal interval.

« Instantaneous speed is the magnitude of the instantaneous velocity.
« Instantaneous speed is a scalar quantity, as it has no direction specified.
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« Average speed is the total distance traveled divided by the elapsed time. (Average speed is not the magnitude of the
average velocity.) Speed is a scalar quantity; it has no direction associated with it.

2.4 Acceleration
« Acceleration is the rate at which velocity changes. In symbols, average acceleration a is
a=Av_Yi~Vo
At g1y’
« The S unit for acceleration is m/s> .

« Acceleration is a vector, and thus has a both a magnitude and direction.
« Acceleration can be caused by either a change in the magnitude or the direction of the velocity.
« Instantaneous acceleration a is the acceleration at a specific instant in time.

« Deceleration is an acceleration with a direction opposite to that of the velocity.

2.5 Motion Equations for Constant Acceleration in One Dimension
« To simplify calculations we take acceleration to be constant, so that @ = a at all times.

* We also take initial time to be zero.
< Initial position and velocity are given a subscript O; final values have no subscript. Thus,

At =t
Ax = x—xg
Av = v—yy
* The following kinematic equations for motion with constant a are useful:
x=xg+ vt
- VotV
p =0
2
v=vg+at

X =Xxg+vol+ %at2
v2 = v(z) + 2a(x — x)
* In vertical motion, y is substituted for x .

2.6 Problem-Solving Basics for One Dimensional Kinematics
« The six basic problem solving steps for physics are:
Step 1. Examine the situation to determine which physical principles are involved.

Step 2. Make a list of what is given or can be inferred from the problem as stated (identify the knowns).
Step 3. Identify exactly what needs to be determined in the problem (identify the unknowns).
Step 4. Find an equation or set of equations that can help you solve the problem.

Step 5. Substitute the knowns along with their units into the appropriate equation, and obtain numerical solutions complete
with units.

Step 6. Check the answer to see if it is reasonable: Does it make sense?

2.7 Falling Objects
« An object in free-fall experiences constant acceleration if air resistance is negligible.
» On Earth, all free-falling objects have an acceleration due to gravity g, which averages

g =9.80 m/s>.

* Whether the acceleration a should be taken as +g or —g is determined by your choice of coordinate system. If you
choose the upward direction as positive, a = —g = —9.80 m/s? is negative. In the opposite case,

a=+g=9.80 m/s2 is positive. Since acceleration is constant, the kinematic equations above can be applied with the
appropriate +g or —g substituted for a .
« For objects in free-fall, up is normally taken as positive for displacement, velocity, and acceleration.
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2.8 Graphical Analysis of One Dimensional Motion
« Graphs of motion can be used to analyze motion.
« Graphical solutions yield identical solutions to mathematical methods for deriving motion equations.
¢ The slope of a graph of displacement x vs. time ¢ is velocity v.

« The slope of a graph of velocity v vs. time ¢ graph is acceleration a .
« Average velocity, instantaneous velocity, and acceleration can all be obtained by analyzing graphs.

Conceptual Questions

2.1 Displacement

1. Give an example in which there are clear distinctions among distance traveled, displacement, and magnitude of displacement.
Specifically identify each quantity in your example.

2. Under what circumstances does distance traveled equal magnitude of displacement? What is the only case in which
magnitude of displacement and displacement are exactly the same?

3. Bacteria move back and forth by using their flagella (structures that look like little tails). Speeds of up to
50 um/s (50)( 1076 m/s) have been observed. The total distance traveled by a bacterium is large for its size, while its

displacement is small. Why is this?

2.2 Vectors, Scalars, and Coordinate Systems

4. A student writes, “A bird that is diving for prey has a speed of — 10 m/s.” What is wrong with the student's statement? What
has the student actually described? Explain.

5. What is the speed of the bird in Exercise 2.4?

6. Acceleration is the change in velocity over time. Given this information, is acceleration a vector or a scalar quantity? Explain.

7. A weather forecast states that the temperature is predicted to be —5°C the following day. Is this temperature a vector or a
scalar quantity? Explain.

2.3 Time, Velocity, and Speed

8. Give an example (but not one from the text) of a device used to measure time and identify what change in that device
indicates a change in time.

9. There is a distinction between average speed and the magnitude of average velocity. Give an example that illustrates the
difference between these two quantities.

10. Does a car's odometer measure position or displacement? Does its speedometer measure speed or velocity?

11. If you divide the total distance traveled on a car trip (as determined by the odometer) by the time for the trip, are you
calculating the average speed or the magnitude of the average velocity? Under what circumstances are these two quantities the
same?

12. How are instantaneous velocity and instantaneous speed related to one another? How do they differ?

2.4 Acceleration

13. Is it possible for speed to be constant while acceleration is not zero? Give an example of such a situation.
14. Is it possible for velocity to be constant while acceleration is not zero? Explain.

15. Give an example in which velocity is zero yet acceleration is not.

16. If a subway train is moving to the left (has a negative velocity) and then comes to a stop, what is the direction of its
acceleration? Is the acceleration positive or negative?

17. Plus and minus signs are used in one-dimensional motion to indicate direction. What is the sign of an acceleration that
reduces the magnitude of a negative velocity? Of a positive velocity?

2.6 Problem-Solving Basics for One Dimensional Kinematics

18. What information do you need in order to choose which equation or equations to use to solve a problem? Explain.

19. What is the last thing you should do when solving a problem? Explain.

2.7 Falling Objects
20. What is the acceleration of a rock thrown straight upward on the way up? At the top of its flight? On the way down?

21. An object that is thrown straight up falls back to Earth. This is one-dimensional motion. (a) When is its velocity zero? (b) Does
its velocity change direction? (c) Does the acceleration due to gravity have the same sign on the way up as on the way down?
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22. Suppose you throw a rock nearly straight up at a coconut in a palm tree, and the rock misses on the way up but hits the
coconut on the way down. Neglecting air resistance, how does the speed of the rock when it hits the coconut on the way down
compare with what it would have been if it had hit the coconut on the way up? Is it more likely to dislodge the coconut on the way
up or down? Explain.

23. If an object is thrown straight up and air resistance is negligible, then its speed when it returns to the starting point is the
same as when it was released. If air resistance were not negligible, how would its speed upon return compare with its initial
speed? How would the maximum height to which it rises be affected?

24. The severity of a fall depends on your speed when you strike the ground. All factors but the acceleration due to gravity being
the same, how many times higher could a safe fall on the Moon be than on Earth (gravitational acceleration on the Moon is about
1/6 that of the Earth)?

25. How many times higher could an astronaut jump on the Moon than on Earth if his takeoff speed is the same in both locations
(gravitational acceleration on the Moon is about 1/6 of g on Earth)?

2.8 Graphical Analysis of One Dimensional Motion

26. (a) Explain how you can use the graph of position versus time in Figure 2.66 to describe the change in velocity over time.
Identify (b) the time (25, f,, ¢, f4, Or fe) at which the instantaneous velocity is greatest, (c) the time at which it is zero, and

(d) the time at which it is negative.

d

c €
# b
=]
)
K=
Z a
~

Time ¢

Figure 2.66

27. (a) Sketch a graph of velocity versus time corresponding to the graph of displacement versus time given in Figure 2.67. (b)
Identify the time or times (7, , },, I¢, etc.) at which the instantaneous velocity is greatest. (c) At which times is it zero? (d) At

which times is it negative?

Position x

Time ¢

Figure 2.67
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28. (a) Explain how you can determine the acceleration over time from a velocity versus time graph such as the one in Figure
2.68. (b) Based on the graph, how does acceleration change over time?

Figure 2.68

Velocity »

A
Yy

A

Time ¢

29. (a) Sketch a graph of acceleration versus time corresponding to the graph of velocity versus time given in Figure 2.69. (b)
Identify the time or times (75, f,, f¢, etc.) at which the acceleration is greatest. (c) At which times is it zero? (d) At which times

is it negative?

Figure 2.69

Velocity v

—_—

Time ¢

30. Consider the velocity vs. time graph of a person in an elevator shown in Figure 2.70. Suppose the elevator is initially at rest.
It then accelerates for 3 seconds, maintains that velocity for 15 seconds, then decelerates for 5 seconds until it stops. The
acceleration for the entire trip is not constant so we cannot use the equations of motion from Motion Equations for Constant
Acceleration in One Dimension for the complete trip. (We could, however, use them in the three individual sections where
acceleration is a constant.) Sketch graphs of (a) position vs. time and (b) acceleration vs. time for this trip.

Velocity v (m/s)

Figure 2.70

Velocity vs. Time

5 10 15 20 25
Time z(s)
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31. A cylinder is given a push and then rolls up an inclined plane. If the origin is the starting point, sketch the position, velocity,
and acceleration of the cylinder vs. time as it goes up and then down the plane.
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Problems & Exercises

2.1 Displacement

A
B
-
C =
s
D
[ e ~
0 2 4 6 10 12
displacement x (m)
Figure 2.71

1. Find the following for path A in Figure 2.71: (a) The
distance traveled. (b) The magnitude of the displacement
from start to finish. (c) The displacement from start to finish.

2. Find the following for path B in Figure 2.71: (a) The
distance traveled. (b) The magnitude of the displacement
from start to finish. (c) The displacement from start to finish.

3. Find the following for path C in Figure 2.71: (a) The
distance traveled. (b) The magnitude of the displacement
from start to finish. (c) The displacement from start to finish.

4. Find the following for path D in Figure 2.71: (a) The
distance traveled. (b) The magnitude of the displacement
from start to finish. (c) The displacement from start to finish.

2.3 Time, Velocity, and Speed

5. (a) Calculate Earth's average speed relative to the Sun. (b)
What is its average velocity over a period of one year?

6. A helicopter blade spins at exactly 100 revolutions per
minute. Its tip is 5.00 m from the center of rotation. (a)
Calculate the average speed of the blade tip in the
helicopter's frame of reference. (b) What is its average
velocity over one revolution?

7. The North American and European continents are moving
apart at a rate of about 3 cm/y. At this rate how long will it
take them to drift 500 km farther apart than they are at
present?

8. Land west of the San Andreas fault in southern California is
moving at an average velocity of about 6 cm/y northwest
relative to land east of the fault. Los Angeles is west of the
fault and may thus someday be at the same latitude as San
Francisco, which is east of the fault. How far in the future will
this occur if the displacement to be made is 590 km
northwest, assuming the motion remains constant?

9. On May 26, 1934, a streamlined, stainless steel diesel train
called the Zephyr set the world's nonstop long-distance speed
record for trains. Its run from Denver to Chicago took 13
hours, 4 minutes, 58 seconds, and was witnessed by more
than a million people along the route. The total distance
traveled was 1633.8 km. What was its average speed in km/h
and m/s?

10. Tidal friction is slowing the rotation of the Earth. As a
result, the orbit of the Moon is increasing in radius at a rate of
approximately 4 cm/year. Assuming this to be a constant rate,
how many years will pass before the radius of the Moon's

orbit increases by 3.84x 10°m (1%)?
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11. A student drove to the university from her home and
noted that the odometer reading of her car increased by 12.0
km. The trip took 18.0 min. (a) What was her average speed?
(b) If the straight-line distance from her home to the university
is 10.3 km in a direction 25.0° south of east, what was her

average velocity? (c) If she returned home by the same path
7 h 30 min after she left, what were her average speed and
velocity for the entire trip?

12. The speed of propagation of the action potential (an
electrical signal) in a nerve cell depends (inversely) on the
diameter of the axon (nerve fiber). If the nerve cell connecting
the spinal cord to your feet is 1.1 m long, and the nerve
impulse speed is 18 m/s, how long does it take for the nerve
signal to travel this distance?

13. Conversations with astronauts on the lunar surface were
characterized by a kind of echo in which the earthbound
person's voice was so loud in the astronaut's space helmet
that it was picked up by the astronaut's microphone and
transmitted back to Earth. It is reasonable to assume that the
echo time equals the time necessary for the radio wave to
travel from the Earth to the Moon and back (that is, neglecting
any time delays in the electronic equipment). Calculate the
distance from Earth to the Moon given that the echo time was
2.56 s and that radio waves travel at the speed of light

(3.00x10% mys) .

14. A football quarterback runs 15.0 m straight down the
playing field in 2.50 s. He is then hit and pushed 3.00 m
straight backward in 1.75 s. He breaks the tackle and runs
straight forward another 21.0 m in 5.20 s. Calculate his
average velocity (a) for each of the three intervals and (b) for
the entire motion.

15. The planetary model of the atom pictures electrons
orbiting the atomic nucleus much as planets orbit the Sun. In
this model you can view hydrogen, the simplest atom, as

having a single electron in a circular orbit 1.06x1071% m in
diameter. (a) If the average speed of the electron in this orbit
is known to be 2.20x 10° m/s , calculate the number of

revolutions per second it makes about the nucleus. (b) What
is the electron's average velocity?

2.4 Acceleration

16. A cheetah can accelerate from rest to a speed of 30.0 m/s
in 7.00 s. What is its acceleration?

17. Professional Application

Dr. John Paul Stapp was U.S. Air Force officer who studied
the effects of extreme deceleration on the human body. On
December 10, 1954, Stapp rode a rocket sled, accelerating
from rest to a top speed of 282 m/s (1015 km/h) in 5.00 s, and
was brought jarringly back to rest in only 1.40 s! Calculate his
(a) acceleration and (b) deceleration. Express each in

multiples of g (9.80 m/sz) by taking its ratio to the
acceleration of gravity.
18. A commuter backs her car out of her garage with an

acceleration of 1.40 m/s>. (a) How long does it take her to

reach a speed of 2.00 m/s? (b) If she then brakes to a stop in
0.800 s, what is her deceleration?
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19. Assume that an intercontinental ballistic missile goes from
rest to a suborbital speed of 6.50 km/s in 60.0 s (the actual
speed and time are classified). What is its average

acceleration in m/s? and in multiples of g (9.80 m/sz)?

2.5 Motion Equations for Constant
Acceleration in One Dimension

20. An Olympic-class sprinter starts a race with an

acceleration of 4.50 m/s?. (a) What is her speed 2.40 s
later? (b) Sketch a graph of her position vs. time for this
period.

21. A well-thrown ball is caught in a well-padded mitt. If the

deceleration of the ballis 2.10x10% m/s2 ,and 1.85 ms

(I ms = 1073 s) elapses from the time the ball first
touches the mitt until it stops, what was the initial velocity of
the ball?

22. A bullet in a gun is accelerated from the firing chamber to

the end of the barrel at an average rate of 6.20%x 10° m/s?

for 8.10x10™* s. What is its muzzle velocity (that is, its
final velocity)?

23. (a) A light-rail commuter train accelerates at a rate of

1.35 m/s? . How long does it take to reach its top speed of
80.0 km/h, starting from rest? (b) The same train ordinarily

decelerates at a rate of 1.65 m/s2 . How long does it take to

come to a stop from its top speed? (c) In emergencies the
train can decelerate more rapidly, coming to rest from 80.0

km/h in 8.30 s. What is its emergency deceleration in m/s? 2

24. While entering a freeway, a car accelerates from rest at a

rate of 2.40 m/s2 for 12.0 s. (a) Draw a sketch of the

situation. (b) List the knowns in this problem. (c) How far does
the car travel in those 12.0 s? To solve this part, first identify
the unknown, and then discuss how you chose the
appropriate equation to solve for it. After choosing the
equation, show your steps in solving for the unknown, check
your units, and discuss whether the answer is reasonable. (d)
What is the car's final velocity? Solve for this unknown in the
same manner as in part (c), showing all steps explicitly.

25. At the end of a race, a runner decelerates from a velocity

of 9.00 m/s at a rate of 2.00 m/s>. (a) How far does she

travel in the next 5.00 s? (b) What is her final velocity? (c)
Evaluate the result. Does it make sense?

26. Professional Application:

Blood is accelerated from rest to 30.0 cm/s in a distance of
1.80 cm by the left ventricle of the heart. (a) Make a sketch of
the situation. (b) List the knowns in this problem. (c) How long
does the acceleration take? To solve this part, first identify the
unknown, and then discuss how you chose the appropriate
equation to solve for it. After choosing the equation, show
your steps in solving for the unknown, checking your units. (d)
Is the answer reasonable when compared with the time for a
heartbeat?

27. In a slap shot, a hockey player accelerates the puck from
a velocity of 8.00 m/s to 40.0 m/s in the same direction. If this

shot takes 3.33x1072 s , calculate the distance over which
the puck accelerates.
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28. A powerful motorcycle can accelerate from rest to 26.8 m/
s (100 km/h) in only 3.90 s. (a) What is its average
acceleration? (b) How far does it travel in that time?

29. Freight trains can produce only relatively small
accelerations and decelerations. (a) What is the final velocity

of a freight train that accelerates at a rate of 0.0500 m/s?
for 8.00 min, starting with an initial velocity of 4.00 m/s? (b) If

the train can slow down at a rate of 0.550 m/sZ, how long

will it take to come to a stop from this velocity? (c) How far will
it travel in each case?

30. A fireworks shell is accelerated from rest to a velocity of
65.0 m/s over a distance of 0.250 m. (a) How long did the
acceleration last? (b) Calculate the acceleration.

31. A swan on a lake gets airborne by flapping its wings and
running on top of the water. (a) If the swan must reach a
velocity of 6.00 m/s to take off and it accelerates from rest at

an average rate of 0.350 m/s2 , how far will it travel before
becoming airborne? (b) How long does this take?

32. Professional Application:

A woodpecker's brain is specially protected from large
decelerations by tendon-like attachments inside the skull.
While pecking on a tree, the woodpecker's head comes to a
stop from an initial velocity of 0.600 m/s in a distance of only

2.00 mm. (a) Find the acceleration in m/s? and in multiples
of g (g =9.80 m/sz). (b) Calculate the stopping time. (c)

The tendons cradling the brain stretch, making its stopping
distance 4.50 mm (greater than the head and, hence, less
deceleration of the brain). What is the brain's deceleration,
expressed in multiples of g ?

33. An unwary football player collides with a padded goalpost
while running at a velocity of 7.50 m/s and comes to a full
stop after compressing the padding and his body 0.350 m. (a)
What is his deceleration? (b) How long does the collision
last?

34. In World War I, there were several reported cases of
airmen who jumped from their flaming airplanes with no
parachute to escape certain death. Some fell about 20,000
feet (6000 m), and some of them survived, with few life-
threatening injuries. For these lucky pilots, the tree branches
and snow drifts on the ground allowed their deceleration to be
relatively small. If we assume that a pilot's speed upon impact
was 123 mph (54 m/s), then what was his deceleration?
Assume that the trees and snow stopped him over a distance
of 3.0 m.

35. Consider a grey squirrel falling out of a tree to the ground.
(a) If we ignore air resistance in this case (only for the sake of
this problem), determine a squirrel's velocity just before hitting
the ground, assuming it fell from a height of 3.0 m. (b) If the
squirrel stops in a distance of 2.0 cm through bending its
limbs, compare its deceleration with that of the airman in the
previous problem.

36. An express train passes through a station. It enters with
an initial velocity of 22.0 m/s and decelerates at a rate of

0.150 m/s? asit goes through. The station is 210 m long.

(a) How long is the nose of the train in the station? (b) How
fast is it going when the nose leaves the station? (c) If the
train is 130 m long, when does the end of the train leave the
station? (d) What is the velocity of the end of the train as it
leaves?
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37. Dragsters can actually reach a top speed of 145 m/s in
only 4.45 s—considerably less time than given in Example
2.10 and Example 2.11. (a) Calculate the average
acceleration for such a dragster. (b) Find the final velocity of
this dragster starting from rest and accelerating at the rate
found in (a) for 402 m (a quarter mile) without using any
information on time. (c) Why is the final velocity greater than
that used to find the average acceleration? Hint: Consider
whether the assumption of constant acceleration is valid for a
dragster. If not, discuss whether the acceleration would be
greater at the beginning or end of the run and what effect that
would have on the final velocity.

38. A bicycle racer sprints at the end of a race to clinch a
victory. The racer has an initial velocity of 11.5 m/s and

accelerates at the rate of 0.500 m/s> for 7.00 s. (a) What is

his final velocity? (b) The racer continues at this velocity to
the finish line. If he was 300 m from the finish line when he
started to accelerate, how much time did he save? (c) One
other racer was 5.00 m ahead when the winner started to
accelerate, but he was unable to accelerate, and traveled at
11.8 m/s until the finish line. How far ahead of him (in meters
and in seconds) did the winner finish?

39. In 1967, New Zealander Burt Munro set the world record
for an Indian motorcycle, on the Bonneville Salt Flats in Utah,
with a maximum speed of 183.58 mi/h. The one-way course
was 5.00 mi long. Acceleration rates are often described by
the time it takes to reach 60.0 mi/h from rest. If this time was
4.00 s, and Burt accelerated at this rate until he reached his
maximum speed, how long did it take Burt to complete the
course?

40. (a) A world record was set for the men's 100-m dash in
the 2008 Olympic Games in Beijing by Usain Bolt of Jamaica.
Bolt “coasted” across the finish line with a time of 9.69 s. If we
assume that Bolt accelerated for 3.00 s to reach his maximum
speed, and maintained that speed for the rest of the race,
calculate his maximum speed and his acceleration. (b) During
the same Olympics, Bolt also set the world record in the
200-m dash with a time of 19.30 s. Using the same
assumptions as for the 100-m dash, what was his maximum
speed for this race?

2.7 Falling Objects
Assume air resistance is negligible unless otherwise stated.

41. Calculate the displacement and velocity at times of (a)
0.500, (b) 1.00, (c) 1.50, and (d) 2.00 s for a ball thrown
straight up with an initial velocity of 15.0 m/s. Take the point of
release to be y;=0.

42. Calculate the displacement and velocity at times of (a)
0.500, (b) 1.00, (c) 1.50, (d) 2.00, and (e) 2.50 s for a rock
thrown straight down with an initial velocity of 14.0 m/s from
the Verrazano Narrows Bridge in New York City. The roadway
of this bridge is 70.0 m above the water.

43. A basketball referee tosses the ball straight up for the
starting tip-off. At what velocity must a basketball player leave
the ground to rise 1.25 m above the floor in an attempt to get
the ball?
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44. A rescue helicopter is hovering over a person whose boat
has sunk. One of the rescuers throws a life preserver straight
down to the victim with an initial velocity of 1.40 m/s and
observes that it takes 1.8 s to reach the water. (a) List the
knowns in this problem. (b) How high above the water was
the preserver released? Note that the downdraft of the
helicopter reduces the effects of air resistance on the falling
life preserver, so that an acceleration equal to that of gravity
is reasonable.

45. A dolphin in an aquatic show jumps straight up out of the
water at a velocity of 13.0 m/s. (a) List the knowns in this
problem. (b) How high does his body rise above the water?
To solve this part, first note that the final velocity is now a
known and identify its value. Then identify the unknown, and
discuss how you chose the appropriate equation to solve for
it. After choosing the equation, show your steps in solving for
the unknown, checking units, and discuss whether the answer
is reasonable. (c) How long is the dolphin in the air? Neglect
any effects due to his size or orientation.

46. A swimmer bounces straight up from a diving board and
falls feet first into a pool. She starts with a velocity of 4.00 m/
s, and her takeoff point is 1.80 m above the pool. (a) How
long are her feet in the air? (b) What is her highest point
above the board? (c) What is her velocity when her feet hit
the water?

47. (a) Calculate the height of a cliff if it takes 2.35 s for a rock
to hit the ground when it is thrown straight up from the cliff
with an initial velocity of 8.00 m/s. (b) How long would it take
to reach the ground if it is thrown straight down with the same
speed?

48. A very strong, but inept, shot putter puts the shot straight
up vertically with an initial velocity of 11.0 m/s. How long does
he have to get out of the way if the shot was released at a
height of 2.20 m, and he is 1.80 m tall?

49. You throw a ball straight up with an initial velocity of 15.0
m/s. It passes a tree branch on the way up at a height of 7.00
m. How much additional time will pass before the ball passes
the tree branch on the way back down?

50. A kangaroo can jump over an object 2.50 m high. (a)
Calculate its vertical speed when it leaves the ground. (b)
How long is it in the air?

51. Standing at the base of one of the cliffs of Mt. Arapiles in
Victoria, Australia, a hiker hears a rock break loose from a
height of 105 m. He can't see the rock right away but then
does, 1.50 s later. (a) How far above the hiker is the rock
when he can see it? (b) How much time does he have to
move before the rock hits his head?

52. An object is dropped from a height of 75.0 m above
ground level. (a) Determine the distance traveled during the
first second. (b) Determine the final velocity at which the
object hits the ground. (c) Determine the distance traveled
during the last second of motion before hitting the ground.

53. There is a 250-m-high cliff at Half Dome in Yosemite
National Park in California. Suppose a boulder breaks loose
from the top of this cliff. (a) How fast will it be going when it
strikes the ground? (b) Assuming a reaction time of 0.300 s,
how long will a tourist at the bottom have to get out of the way
after hearing the sound of the rock breaking loose (neglecting
the height of the tourist, which would become negligible
anyway if hit)? The speed of sound is 335 m/s on this day.

54. A ball is thrown straight up. It passes a 2.00-m-high
window 7.50 m off the ground on its path up and takes 1.30 s
to go past the window. What was the ball's initial velocity?
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55. Suppose you drop a rock into a dark well and, using
precision equipment, you measure the time for the sound of a
splash to return. (a) Neglecting the time required for sound to
travel up the well, calculate the distance to the water if the
sound returns in 2.0000 s. (b) Now calculate the distance
taking into account the time for sound to travel up the well.
The speed of sound is 332.00 m/s in this well.

56. A steel ball is dropped onto a hard floor from a height of
1.50 m and rebounds to a height of 1.45 m. (a) Calculate its
velocity just before it strikes the floor. (b) Calculate its velocity
just after it leaves the floor on its way back up. (c) Calculate
its acceleration during contact with the floor if that contact

lasts 0.0800 ms (8.00x 107> s) . (d) How much did the ball

compress during its collision with the floor, assuming the floor
is absolutely rigid?

57. A coin is dropped from a hot-air balloon that is 300 m
above the ground and rising at 10.0 m/s upward. For the coin,
find (a) the maximum height reached, (b) its position and
velocity 4.00 s after being released, and (c) the time before it
hits the ground.

58. A soft tennis ball is dropped onto a hard floor from a
height of 1.50 m and rebounds to a height of 1.10 m. (a)
Calculate its velocity just before it strikes the floor. (b)
Calculate its velocity just after it leaves the floor on its way
back up. (c) Calculate its acceleration during contact with the

floor if that contact lasts 3.50 ms (3.50)(10_3 S) . (d) How

much did the ball compress during its collision with the floor,
assuming the floor is absolutely rigid?

2.8 Graphical Analysis of One Dimensional
Motion

Note: There is always uncertainty in numbers taken from
graphs. If your answers differ from expected values, examine
them to see if they are within data extraction uncertainties
estimated by you.
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59. (a) By taking the slope of the curve in Figure 2.72, verify
that the velocity of the jet caris 115 m/s at ¢t = 20 s. (b) By
taking the slope of the curve at any point in Figure 2.73,

verify that the jet car's acceleration is 5.0 m/s?.

Position vs. Time
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Figure 2.73
60. Using approximate values, calculate the slope of the
curve in Figure 2.74 to verify that the velocity at t = 10.0 s

is 0.208 m/s. Assume all values are known to 3 significant
figures.

Position vs. Time
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Figure 2.74
61. Using approximate values, calculate the slope of the
curve in Figure 2.74 to verify that the velocity at ¢ = 30.0 s

is 0.238 m/s. Assume all values are known to 3 significant
figures.
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62. By taking the slope of the curve in Figure 2.75, verify that

the acceleration is approximately 3.2 m/s? at t=10s.
Velocity vs. Time
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Figure 2.75

63. Construct the displacement graph for the subway shuttle
train as shown in Figure 2.30(a). Your graph should show the
position of the train, in kilometers, from t = 0 to 20 s. You will
need to use the information on acceleration and velocity given
in the examples for this figure.
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64. (a) Take the slope of the curve in Figure 2.76 to find the
jogger's velocity at t = 2.5 s. (b) Repeat at 7.5 s. These
values must be consistent with the graph in Figure 2.77.
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65. A graph of v(f) is shown for a world-class track sprinter

in a 100-m race. (See Figure 2.79). (a) What is his average
velocity for the first 4 s? (b) What is his instantaneous velocity
at t = 5 s ?(c) What is his average acceleration between 0
and 4 s? (d) What is his time for the race?

Runner Velocity vs. Time
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Figure 2.79

66. Figure 2.80 shows the displacement graph for a particle
for 5 s. Draw the corresponding velocity and acceleration
graphs.

Position vs. Time
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Figure 2.80

Test Prep for AP® Courses a.

2.1 Displacement b.

1. Which of the following statements comparing position, c.

distance, and displacement is correct?

a. An object may record a distance of zero while recording d.

a non-zero displacement.
b. An object may record a non-zero distance while

Chapter 2 | Kinematics

Her hand should be a coordinate of zero and the
upward direction should be considered positive.

Her hand should be a coordinate of zero and the
downward direction should be considered positive.

The floor should be a coordinate of zero and the upward
direction should be considered positive.

The floor should be a coordinate of zero and the
downward direction should be considered positive.

record_ing a displacement of zero. _ _ 2.3 Time, Velocity, and Speed
c. An object may record a non-zero distance while .
maintaining a position of zero. 3. A group of students has two carts, A and B, with wheels
d. An object may record a non-zero displacement while that turn with negligible friction. The two carts travel along a
maintaining a position of zero. straight horizontal track and eventually collide. Before the
collision, cart A travels to the right and cart B is initially at rest.
2.2 Vectors’ ScalarS, and Coordinate Systems After the CO||ISIOI’I, the carts stick together.

2. A student is trying to determine the acceleration of a
feather as she drops it to the ground. If the student is looking
to achieve a positive velocity and positive acceleration, what
is the most sensible way to set up her coordinate system?
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a. Describe an experimental procedure to determine the
velocities of the carts before and after the collision,
including all the additional equipment you would need.
You may include a labeled diagram of your setup to help
in your description. Indicate what measurements you
would take and how you would take them. Include
enough detail so that another student could carry out
your procedure.

b. There will be sources of error in the measurements
taken in the experiment both before and after the
collision. Which velocity will be more greatly affected by
this error: the velocity prior to the collision or the velocity
after the collision? Or will both sets of data be affected
equally? Justify your answer.

2.4 Acceleration
4.
v (mls)

10

RN B &y @

Figure 2.81 Graph showing Velocity vs. Time of a cart. A cart is
constrained to move along a straight line. A varying net force
along the direction of motion is exerted on the cart. The cart's
velocity v as a function of time t is shown in the graph. The
five labeled points divide the graph into four sections.

Which of the following correctly ranks the magnitude of the
average acceleration of the cart during the four sections of
the graph?

a. acp>aaAB>asc > apE

b. apc>aaB>acp > ape

C. aAB>aac > ape > acp

d. acp >aas > ape > asc
5. Push a book across a table and observe it slow to a stop.

Draw graphs showing the book's position vs. time and velocity
vs. time if the direction of its motion is considered positive.

Draw graphs showing the book's position vs. time and velocity
vs. time if the direction of its motion is considered negative.

2.5 Motion Equations for Constant
Acceleration in One Dimension
6. A group of students is attempting to determine the average

acceleration of a marble released from the top of a long ramp.
Below is a set of data representing the marble's position with
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respect to time.

0.0 0.0
0.3 0.5
1.25 1.0
2.8 15
5.0 2.0
7.75 25
11.3 3.0

Use the data table above to construct a graph determining the
acceleration of the marble. Select a set of data points from
the table and plot those points on the graph. Fill in the blank
column in the table for any quantities you graph other than
the given data. Label the axes and indicate the scale for
each. Draw a best-fit line or curve through your data points.

Using the best-fit line, determine the value of the marble's
acceleration.

2.7 Falling Objects

7. Observing a spacecraft land on a distant asteroid,
scientists notice that the craft is falling at a rate of 5 m/s.
When it is 100 m closer to the surface of the asteroid, the
craft reports a velocity of 8 m/s. According to their data, what
is the approximate gravitational acceleration on this asteroid?

a. omis?

b. 0.03 m/s?
c. 0.20 m/s?
d. 0.65m/s?
e. 33mis?
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Figure 3.1 Everyday motion that we experience is, thankfully, rarely as tortuous as a rollercoaster ride like this—the Dragon Khan in Spain's Universal
Port Aventura Amusement Park. However, most motion is in curved, rather than straight-line, paths. Motion along a curved path is two- or three-
dimensional motion, and can be described in a similar fashion to one-dimensional motion. (credit: Boris23/Wikimedia Commons)

Chapter Outline

3.1. Kinematics in Two Dimensions: An Introduction

3.2. Vector Addition and Subtraction: Graphical Methods
3.3. Vector Addition and Subtraction: Analytical Methods
3.4. Projectile Motion

3.5. Addition of Velocities

Connection for AP® Courses

Most instances of motion in everyday life involve changes in displacement and velocity that occur in more than one direction. For
example, when you take a long road trip, you drive on different roads in different directions for different amounts of time at
different speeds. How can these motions all be combined to determine information about the trip such as the total displacement
and average velocity? If you kick a ball from ground level at some angle above the horizontal, how can you describe its motion?
To what maximum height does the object rise above the ground? How long is the object in the air? How much horizontal distance
is covered before the ball lands? To answer questions such as these, we need to describe motion in two dimensions.

Examining two-dimensional motion requires an understanding of both the scalar and the vector quantities associated with the
motion. You will learn how to combine vectors to incorporate both the magnitude and direction of vectors into your analysis. You
will learn strategies for simplifying the calculations involved by choosing the appropriate reference frame and by treating each
dimension of the motion separately as a one-dimensional problem, but you will also see that the motion itself occurs in the same
way regardless of your chosen reference frame (Essential Knowledge 3.A.1).
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This chapter lays a necessary foundation for examining interactions of objects described by forces (Big Idea 3). Changes in
direction result from acceleration, which necessitates force on an object. In this chapter, you will concentrate on describing
motion that involves changes in direction. In later chapters, you will apply this understanding as you learn about how forces
cause these motions (Enduring Understanding 3.A). The concepts in this chapter support:

Big Idea 3 The interactions of an object with other objects can be described by forces.

Enduring Understanding 3.A All forces share certain common characteristics when considered by observers in inertial reference
frames.

Essential Knowledge 3.A.1 An observer in a particular reference frame can describe the motion of an object using such
quantities as position, displacement, distance, velocity, speed, and acceleration.

3.1 Kinematics in Two Dimensions: An Introduction

Learning Objectives

By the end of this section, you will be able to:

* Observe that motion in two dimensions consists of horizontal and vertical components.
« Understand the independence of horizontal and vertical vectors in two-dimensional motion.

The information presented in this section supports the following AP® learning objectives and science practices:

» 3.A.1.1 The student is able to express the motion of an object using narrative, mathematical, and graphical
representations. (S.P. 1.5, 2.1, 2.2)

» 3.A.1.2 The student is able to design an experimental investigation of the motion of an object. (S.P. 4.2)

« 3.A.1.3 The student is able to analyze experimental data describing the motion of an object and is able to express the
results of the analysis using narrative, mathematical, and graphical representations. (S.P. 5.1)

L . :
Figure 3.2 Walkers and drivers in a city like New York are rarely able to travel in straight lines to reach their destinations. Instead, they must follow
roads and sidewalks, making two-dimensional, zigzagged paths. (credit: Margaret W. Carruthers)

Two-Dimensional Motion: Walking in a City
Suppose you want to walk from one point to another in a city with uniform square blocks, as pictured in Figure 3.3.

Destination

F I L

’ INE I

. “ 3 0 W E

L s
Starting point ,—FI ':—0

|
012 3 456 7 8 9x
9 blocks east
Figure 3.3 A pedestrian walks a two-dimensional path between two points in a city. In this scene, all blocks are square and are the same size.

The straight-line path that a helicopter might fly is blocked to you as a pedestrian, and so you are forced to take a two-
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dimensional path, such as the one shown. You walk 14 blocks in all, 9 east followed by 5 north. What is the straight-line
distance?

An old adage states that the shortest distance between two points is a straight line. The two legs of the trip and the straight-line

2

path form a right triangle, and so the Pythagorean theorem, a? + p?=c , can be used to find the straight-line distance.

c=Ja* + b° 5

a

Figure 3.4 The Pythagorean theorem relates the length of the legs of a right triangle, labeled a and b, with the hypotenuse, labeled ¢ . The

relationship is given by: a2 + b2 = 62 . This can be rewritten, solving for ¢ : ¢ = Va2 + b2 .

The hypotenuse of the triangle is the straight-line path, and so in this case its length in units of city blocks is

W/(9 blocks)2+ &) blocks)2= 10.3 blocks , considerably shorter than the 14 blocks you walked. (Note that we are using three

significant figures in the answer. Although it appears that “9” and “5” have only one significant digit, they are discrete numbers. In
this case “9 blocks” is the same as “9.0 or 9.00 blocks.” We have decided to use three significant figures in the answer in order to
show the result more precisely.)

Destination
y
Tt | A
s Ve =
Y\e\-\ooq‘o\odé' o 4 8
,\05 3 9 w E
| 0 S
A\ 2 9
- = =
0- 1
Starting point i 9_‘29"1 — 0
012 3 4567 8 9x

9 blocks east

Figure 3.5 The straight-line path followed by a helicopter between the two points is shorter than the 14 blocks walked by the pedestrian. All blocks are
square and the same size.

The fact that the straight-line distance (10.3 blocks) in Figure 3.5 is less than the total distance walked (14 blocks) is one
example of a general characteristic of vectors. (Recall that vectors are quantities that have both magnitude and direction.)

As for one-dimensional kinematics, we use arrows to represent vectors. The length of the arrow is proportional to the vector's
magnitude. The arrow's length is indicated by hash marks in Figure 3.3 and Figure 3.5. The arrow points in the same direction
as the vector. For two-dimensional motion, the path of an object can be represented with three vectors: one vector shows the
straight-line path between the initial and final points of the motion, one vector shows the horizontal component of the motion, and
one vector shows the vertical component of the motion. The horizontal and vertical components of the motion add together to
give the straight-line path. For example, observe the three vectors in Figure 3.5. The first represents a 9-block displacement
east. The second represents a 5-block displacement north. These vectors are added to give the third vector, with a 10.3-block
total displacement. The third vector is the straight-line path between the two points. Note that in this example, the vectors that we
are adding are perpendicular to each other and thus form a right triangle. This means that we can use the Pythagorean theorem
to calculate the magnitude of the total displacement. (Note that we cannot use the Pythagorean theorem to add vectors that are
not perpendicular. We will develop techniques for adding vectors having any direction, not just those perpendicular to one
another, in Vector Addition and Subtraction: Graphical Methods and Vector Addition and Subtraction: Analytical
Methods.)

The Independence of Perpendicular Motions

The person taking the path shown in Figure 3.5 walks east and then north (two perpendicular directions). How far he or she
walks east is only affected by his or her motion eastward. Similarly, how far he or she walks north is only affected by his or her
motion northward.

Independence of Motion

The horizontal and vertical components of two-dimensional motion are independent of each other. Any motion in the
horizontal direction does not affect motion in the vertical direction, and vice versa.

This is true in a simple scenario like that of walking in one direction first, followed by another. It is also true of more complicated
motion involving movement in two directions at once. For example, let's compare the motions of two baseballs. One baseball is
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dropped from rest. At the same instant, another is thrown horizontally from the same height and follows a curved path. A
stroboscope has captured the positions of the balls at fixed time intervals as they fall.

T
R
s

L

n

~

Figure 3.6 This shows the motions of two identical balls—one falls from rest, the other has an initial horizontal velocity. Each subsequent position is an
equal time interval. Arrows represent horizontal and vertical velocities at each position. The ball on the right has an initial horizontal velocity, while the
ball on the left has no horizontal velocity. Despite the difference in horizontal velocities, the vertical velocities and positions are identical for both balls.
This shows that the vertical and horizontal motions are independent.

Applying the Science Practices: Independence of Horizontal and Vertical Motion or Maximum Height and Flight Time
Choose one of the following experiments to design:

Design an experiment to confirm what is shown in Figure 3.6, that the vertical motion of the two balls is independent of the
horizontal motion. As you think about your experiment, consider the following questions:

« How will you measure the horizontal and vertical positions of each ball over time? What equipment will this require?

» How will you measure the time interval between each of your position measurements? What equipment will this
require?

« If you were to create separate graphs of the horizontal velocity for each ball versus time, what do you predict it would
look like? Explain.

 If you were to compare graphs of the vertical velocity for each ball versus time, what do you predict it would look like?
Explain.

« If there is a significant amount of air resistance, how will that affect each of your graphs?

Design a two-dimensional ballistic motion experiment that demonstrates the relationship between the maximum height
reached by an object and the object's time of flight. As you think about your experiment, consider the following questions:

« How will you measure the maximum height reached by your object?

* How can you take advantage of the symmetry of an object in ballistic motion launched from ground level, reaching
maximum height, and returning to ground level?

« Will it make a difference if your object has no horizontal component to its velocity? Explain.

» Will you need to measure the time at multiple different positions? Why or why not?

« Predict what a graph of travel time versus maximum height will look like. Will it be linear? Parabolic? Horizontal?
Explain the shape of your predicted graph qualitatively or quantitatively.

« If there is a significant amount of air resistance, how will that affect your measurements and your results?

It is remarkable that for each flash of the strobe, the vertical positions of the two balls are the same. This similarity implies that
the vertical motion is independent of whether or not the ball is moving horizontally. (Assuming no air resistance, the vertical
motion of a falling object is influenced by gravity only, and not by any horizontal forces.) Careful examination of the ball thrown
horizontally shows that it travels the same horizontal distance between flashes. This is due to the fact that there are no additional
forces on the ball in the horizontal direction after it is thrown. This result means that the horizontal velocity is constant, and
affected neither by vertical motion nor by gravity (which is vertical). Note that this case is true only for ideal conditions. In the real
world, air resistance will affect the speed of the balls in both directions.

The two-dimensional curved path of the horizontally thrown ball is composed of two independent one-dimensional motions
(horizontal and vertical). The key to analyzing such motion, called projectile motion, is to resolve (break) it into motions along
perpendicular directions. Resolving two-dimensional motion into perpendicular components is possible because the components
are independent. We shall see how to resolve vectors in Vector Addition and Subtraction: Graphical Methods and Vector
Addition and Subtraction: Analytical Methods. We will find such techniques to be useful in many areas of physics.

PhET Explorations: Ladybug Motion 2D

Learn about position, velocity and acceleration vectors. Move the ladybug by setting the position, velocity or acceleration,
and see how the vectors change. Choose linear, circular or elliptical motion, and record and playback the motion to analyze
the behavior.

This OpenStax book is available for free at http://cnx.org/content/col11844/1.14



Chapter 3 | Two-Dimensional Kinematics 101

> PhET Interactive Simulation

Figure 3.7 Ladybug Motion 2D (http://cnx.org/content/m54779/1.2/ladybug-motion-2d_en.jar)

3.2 Vector Addition and Subtraction: Graphical Methods

Learning Objectives

By the end of this section, you will be able to:

* Understand the rules of vector addition, subtraction, and multiplication.
* Apply graphical methods of vector addition and subtraction to determine the displacement of moving objects.

The information presented in this section supports the following AP® learning objectives and science practices:

« 3.A.1.1 The student is able to express the motion of an object using narrative, mathematical, and graphical
representations. (S.P. 1.5, 2.1, 2.2)

« 3.A.1.3 The student is able to analyze experimental data describing the motion of an object and is able to express the
results of the analysis using narrative, mathematical, and graphical representations. (S.P. 5.1)

Figure 3.8 Displacement can be determined graphically using a scale map, such as this one of the Hawaiian Islands. A journey from Hawai'i to
Moloka'i has a number of legs, or journey segments. These segments can be added graphically with a ruler to determine the total two-dimensional
displacement of the journey. (credit: US Geological Survey)

Vectors in Two Dimensions

A vector is a quantity that has magnitude and direction. Displacement, velocity, acceleration, and force, for example, are all
vectors. In one-dimensional, or straight-line, motion, the direction of a vector can be given simply by a plus or minus sign. In two
dimensions (2-d), however, we specify the direction of a vector relative to some reference frame (i.e., coordinate system), using
an arrow having length proportional to the vector's magnitude and pointing in the direction of the vector.

Figure 3.9 shows such a graphical representation of a vector, using as an example the total displacement for the person walking
in a city considered in Kinematics in Two Dimensions: An Introduction. We shall use the notation that a boldface symbol,
such as D, stands for a vector. Its magnitude is represented by the symbol in italics, D , and its direction by 6.

Vectors in this Text

In this text, we will represent a vector with a boldface variable. For example, we will represent the quantity force with the
vector F, which has both magnitude and direction. The magnitude of the vector will be represented by a variable in italics,
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such as F', and the direction of the variable will be given by an angle 6.
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Figure 3.9 A person walks 9 blocks east and 5 blocks north. The displacement is 10.3 blocks at an angle 29.1° north of east.
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Figure 3.10 To describe the resultant vector for the person walking in a city considered in Figure 3.9 graphically, draw an arrow to represent the total
displacement vector D. Using a protractor, draw a line at an angle 0 relative to the east-west axis. The length D of the arrow is proportional to the

vector's magnitude and is measured along the line with a ruler. In this example, the magnitude D of the vector is 10.3 units, and the direction € is

29.1° north of east.

Vector Addition: Head-to-Tail Method

The head-to-tail method is a graphical way to add vectors, described in Figure 3.11 below and in the steps following. The tail
of the vector is the starting point of the vector, and the head (or tip) of a vector is the final, pointed end of the arrow.

This OpenStax book is available for free at http://cnx.org/content/col11844/1.14
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: VT
9 units & /

(a) (b) (c)
Figure 3.11 Head-to-Tail Method: The head-to-tail method of graphically adding vectors is illustrated for the two displacements of the person walking

in a city considered in Figure 3.9. (a) Draw a vector representing the displacement to the east. (b) Draw a vector representing the displacement to the
north. The tail of this vector should originate from the head of the first, east-pointing vector. (c) Draw a line from the tail of the east-pointing vector to the

head of the north-pointing vector to form the sum or resultant vector D . The length of the arrow Dis proportional to the vector's magnitude and is
measured to be 10.3 units . Its direction, described as the angle with respect to the east (or horizontal axis) @ is measured with a protractor to be
29.1°.

Step 1. Draw an arrow to represent the first vector (9 blocks to the east) using a ruler and protractor.

v

9 units
(a)
Figure 3.12

Step 2. Now draw an arrow to represent the second vector (5 blocks to the north). Place the tail of the second vector at the head
of the first vector.

v

<V

(b)
Figure 3.13
Step 3. If there are more than two vectors, continue this process for each vector to be added. Note that in our example, we have
only two vectors, so we have finished placing arrows tip to tail.

Step 4. Draw an arrow from the tail of the first vector to the head of the last vector. This is the resultant, or the sum, of the other
vectors.
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Figure 3.14
Step 5. To get the magnitude of the resultant, measure its length with a ruler. (Note that in most calculations, we will use the
Pythagorean theorem to determine this length.)

Step 6. To get the direction of the resultant, measure the angle it makes with the reference frame using a protractor. (Note that
in most calculations, we will use trigonometric relationships to determine this angle.)

The graphical addition of vectors is limited in accuracy only by the precision with which the drawings can be made and the
precision of the measuring tools. It is valid for any number of vectors.

Example 3.1 Adding Vectors Graphically Using the Head-to-Tail Method: A Woman Takes &

Use the graphical technique for adding vectors to find the total displacement of a person who walks the following three paths
(displacements) on a flat field. First, she walks 25.0 m in a direction 49.0° north of east. Then, she walks 23.0 m heading

15.0° north of east. Finally, she turns and walks 32.0 m in a direction 68.0° south of east.
Strategy

Represent each displacement vector graphically with an arrow, labeling the first A , the second B, and the third C,
making the lengths proportional to the distance and the directions as specified relative to an east-west line. The head-to-tail
method outlined above will give a way to determine the magnitude and direction of the resultant displacement, denoted R .

Solution
(1) Draw the three displacement vectors.

v v

Figure 3.15

(2) Place the vectors head to tail retaining both their initial magnitude and direction.

This OpenStax book is available for free at http://cnx.org/content/col11844/1.14
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()

Figure 3.16

(3) Draw the resultant vector, R..

(g}

50.0 m
Figure 3.17

(4) Use a ruler to measure the magnitude of R, and a protractor to measure the direction of R . While the direction of the
vector can be specified in many ways, the easiest way is to measure the angle between the vector and the nearest
horizontal or vertical axis. Since the resultant vector is south of the eastward pointing axis, we flip the protractor upside down
and measure the angle between the eastward axis and the vector.
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Figure 3.18

In this case, the total displacement R is seen to have a magnitude of 50.0 m and to lie in a direction 7.0° south of east. By
using its magnitude and direction, this vector can be expressed as R = 50.0 m and 6 = 7.0° south of east.

Discussion

The head-to-tail graphical method of vector addition works for any number of vectors. It is also important to note that the
resultant is independent of the order in which the vectors are added. Therefore, we could add the vectors in any order as
illustrated in Figure 3.19 and we will still get the same solution.
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70

50.0 m L)
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xV

Figure 3.19

Here, we see that when the same vectors are added in a different order, the result is the same. This characteristic is true in
every case and is an important characteristic of vectors. Vector addition is commutative. Vectors can be added in any order.

A+B=B+A. (3.1)

(This is true for the addition of ordinary numbers as well—you get the same result whether youadd 2+ 3 or 3 + 2, for
example).

Vector Subtraction

Vector subtraction is a straightforward extension of vector addition. To define subtraction (say we want to subtract B from A ,
written A — B , we must first define what we mean by subtraction. The negative of a vector B is defined to be —B ; that is,
graphically the negative of any vector has the same magnitude but the opposite direction, as shown in Figure 3.20. In other
words, B has the same length as =B, but points in the opposite direction. Essentially, we just flip the vector so it points in the
opposite direction.

Figure 3.20 The negative of a vector is just another vector of the same magnitude but pointing in the opposite direction. So B is the negative of =B ;
it has the same length but opposite direction.

The subtraction of vector B from vector A is then simply defined to be the addition of =B to A . Note that vector subtraction
is the addition of a negative vector. The order of subtraction does not affect the results.

A-B=A + (-B). (3.2)

This is analogous to the subtraction of scalars (where, for example, 5 —2 =5 4 (=2) ). Again, the result is independent of the

order in which the subtraction is made. When vectors are subtracted graphically, the techniques outlined above are used, as the
following example illustrates.

Example 3.2 Subtracting Vectors Graphically: A Woman Sailing a Boat

A woman sailing a boat at night is following directions to a dock. The instructions read to first sail 27.5 m in a direction
66.0° north of east from her current location, and then travel 30.0 m in a direction 112° north of east (or 22.0° west of
north). If the woman makes a mistake and travels in the opposite direction for the second leg of the trip, where will she end

This OpenStax book is available for free at http://cnx.org/content/col11844/1.14
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up? Compare this location with the location of the dock.

A B
y[ A=275m B =30.0m
66° 112°
X

(a)

Figure 3.21

Strategy

We can represent the first leg of the trip with a vector A , and the second leg of the trip with a vector B . The dock is
located at a location A + B . If the woman mistakenly travels in the opposite direction for the second leg of the journey, she
will travel a distance B (30.0 m) in the direction 180° — 112° = 68° south of east. We represent this as =B , as shown

below. The vector —B has the same magnitude as B but is in the opposite direction. Thus, she will end up at a location
A+ (-B),or A-B.

Figure 3.22

We will perform vector addition to compare the location of the dock, A + B, with the location at which the woman
mistakenly arrives, A + (-B) .

Solution

(1) To determine the location at which the woman arrives by accident, draw vectors A and -B .

(2) Place the vectors head to tail.

(3) Draw the resultant vector R .

(4) Use a ruler and protractor to measure the magnitude and direction of R .

Figure 3.23

In this case, R = 23.0 m and @ = 7.5° south of east.
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(5) To determine the location of the dock, we repeat this method to add vectors A and B . We obtain the resultant vector

R':
B
A+B=R
R’ 112
y R =529m A
90.1°
X 660
(c)
Figure 3.24

In this case R =52.9m and 6 = 90.1° north of east.

We can see that the woman will end up a significant distance from the dock if she travels in the opposite direction for the
second leg of the trip.
Discussion

Because subtraction of a vector is the same as addition of a vector with the opposite direction, the graphical method of
subtracting vectors works the same as for addition.

Multiplication of Vectors and Scalars

If we decided to walk three times as far on the first leg of the trip considered in the preceding example, then we would walk

3% 27.5m, or 82.5m, in a direction 66.0° north of east. This is an example of multiplying a vector by a positive scalar.
Notice that the magnitude changes, but the direction stays the same.

If the scalar is negative, then multiplying a vector by it changes the vector's magnitude and gives the new vector the opposite
direction. For example, if you multiply by —2, the magnitude doubles but the direction changes. We can summarize these rules in
the following way: When vector A is multiplied by a scalar ¢,

« the magnitude of the vector becomes the absolute value of ¢ A,
« if ¢ is positive, the direction of the vector does not change,
« if ¢ is negative, the direction is reversed.

Inour case, ¢ =3 and A = 27.5 m. Vectors are multiplied by scalars in many situations. Note that division is the inverse of

multiplication. For example, dividing by 2 is the same as multiplying by the value (1/2). The rules for multiplication of vectors by
scalars are the same for division; simply treat the divisor as a scalar between 0 and 1.

Resolving a Vector into Components

In the examples above, we have been adding vectors to determine the resultant vector. In many cases, however, we will need to
do the opposite. We will need to take a single vector and find what other vectors added together produce it. In most cases, this
involves determining the perpendicular components of a single vector, for example the x- and y-components, or the north-south
and east-west components.

For example, we may know that the total displacement of a person walking in a city is 10.3 blocks in a direction 29.0° north of
east and want to find out how many blocks east and north had to be walked. This method is called finding the components (or
parts) of the displacement in the east and north directions, and it is the inverse of the process followed to find the total
displacement. It is one example of finding the components of a vector. There are many applications in physics where this is a
useful thing to do. We will see this soon in Projectile Motion, and much more when we cover forces in Dynamics: Newton's
Laws of Motion. Most of these involve finding components along perpendicular axes (such as north and east), so that right
triangles are involved. The analytical techniques presented in Vector Addition and Subtraction: Analytical Methods are ideal
for finding vector components.

PhET Explorations: Maze Game

Learn about position, velocity, and acceleration in the "Arena of Pain". Use the green arrow to move the ball. Add more walls
to the arena to make the game more difficult. Try to make a goal as fast as you can.

This OpenStax book is available for free at http://cnx.org/content/col11844/1.14
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PhET Interactive Simulation

Figure 3.25 Maze Game (http://cnx.org/content/m54781/1.2/maze-game_en.jar)

3.3 Vector Addition and Subtraction: Analytical Methods

Learning Objectives

By the end of this section, you will be able to:

» Understand the rules of vector addition and subtraction using analytical methods.
* Apply analytical methods to determine vertical and horizontal component vectors.
* Apply analytical methods to determine the magnitude and direction of a resultant vector.

The information presented in this section supports the following AP® learning objectives and science practices:

* 3.A.1.1 The student is able to express the motion of an object using narrative, mathematical, and graphical
representations. (S.P. 1.5, 2.1, 2.2)

Analytical methods of vector addition and subtraction employ geometry and simple trigonometry rather than the ruler and
protractor of graphical methods. Part of the graphical technique is retained, because vectors are still represented by arrows for
easy visualization. However, analytical methods are more concise, accurate, and precise than graphical methods, which are
limited by the accuracy with which a drawing can be made. Analytical methods are limited only by the accuracy and precision
with which physical quantities are known.

Resolving a Vector into Perpendicular Components

Analytical techniques and right triangles go hand-in-hand in physics because (among other things) motions along perpendicular
directions are independent. We very often need to separate a vector into perpendicular components. For example, given a vector
like A in Figure 3.26, we may wish to find which two perpendicular vectors, A, and Ay, add to produce it.

Y A+ A=A

A X

X

Figure 3.26 The vector A | with its tail at the origin of an x, y-coordinate system, is shown together with its x- and y-components, Ax and Ay .
These vectors form a right triangle. The analytical relationships among these vectors are summarized below.
A, and Ay are defined to be the components of A along the x- and y-axes. The three vectors A, A, , and Ay form a right
triangle:
Ay + Ay =A. (3.3)

Note that this relationship between vector components and the resultant vector holds only for vector quantities (which include
both magnitude and direction). The relationship does not apply for the magnitudes alone. For example, if A, = 3 m east,
Ay =4m north,and A = 5 m north-east, then itis true that the vectors Ay + Ay = A . However, it is not true that the sum
of the magnitudes of the vectors is also equal. That is,

3m+4m # 5m (3.4)
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Thus,
Ac+Ay#A (3.5)

If the vector A is known, then its magnitude A (its length) and its angle @ (its direction) are known. To find A, and Ay, its x-

and y-components, we use the following relationships for a right triangle.

Ay=Acos 0 (3.6)
and
Ay =Asin 6. (3.7)
v A, + Ay =A
A i
' A, = Asinf
o [

A, = Acosé o
Figure 3.27 The magnitudes of the vector components Ax and Ay can be related to the resultant vector A and the angle 6 with trigonometric

identities. Here we see that Ay = A cos @ and Ay = A sin 0.

Suppose, for example, that A is the vector representing the total displacement of the person walking in a city considered in
Kinematics in Two Dimensions: An Introduction and Vector Addition and Subtraction: Graphical Methods.

Destination
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4 A,= Asin 8
W E 3 = (10.3 blocks)(sin 29.1°)
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A,= Acos 0
= (10.3 blocks)(cos 29.1°)
= 9.0 blocks east

Figure 3.28 We can use the relationships A, = A cos 8 and Ay = A sin 0 to determine the magnitude of the horizontal and vertical

component vectors in this example.
Then A = 10.3 blocks and 6 = 29.1° , so that

A, = A cos 0 = (10.3 blocks)cos 29.1°) = 9.0 blocks (3.8)
Ay = Asin @ = (10.3 blocks)(sin 29.1°) = 5.0 blocks. (3.9)

Calculating a Resultant Vector
If the perpendicular components A , and Ay of avector A are known, then A can also be found analytically. To find the

magnitude A and direction @ of a vector from its perpendicular components A, and Ay , we use the following relationships:

_ 3.10
A_4/Ax2+Ay2 (3.10)
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0 =tan" (A, A)). (3.11)

-

S
<

Figure 3.29 The magnitude and direction of the resultant vector can be determined once the horizontal and vertical components A, and Ay have

been determined.

Note that the equation A = \/A% + A% is just the Pythagorean theorem relating the legs of a right triangle to the length of the

hypotenuse. For example, if A, and A, are 9 and 5 blocks, respectively, then A = V92 +52=10.3 blocks, again consistent

with the example of the person walking in a city. Finally, the direction is € = tan_l(5/9)=29.1° , as before.

Determining Vectors and Vector Components with Analytical Methods

Equations A, = A cos 6 and A, = A sin @ are used to find the perpendicular components of a vector—that is, to go

from A and & to Ay and Ay . Equations A = VA)Zc + A% and 0 = tan_l(Ay/Ax) are used to find a vector from its

perpendicular components—that is, to go from A, and Ay to A and 6. Both processes are crucial to analytical methods

of vector addition and subtraction.

Adding Vectors Using Analytical Methods

To see how to add vectors using perpendicular components, consider Figure 3.30, in which the vectors A and B are added to
produce the resultant R .

A+B=R

S

X
Figure 3.30 Vectors A and B are two legs of a walk, and R is the resultant or total displacement. You can use analytical methods to determine

the magnitude and direction of R.

If A and B represent two legs of a walk (two displacements), then R is the total displacement. The person taking the walk
ends up at the tip of R. There are many ways to arrive at the same point. In particular, the person could have walked first in the
x-direction and then in the y-direction. Those paths are the x- and y-components of the resultant, R and Ry. If we know R

and Ry, wecanfind R and 6 using the equations A = \/sz + Ay2 and 0 = tanfl(Ay/Ax) . When you use the analytical
method of vector addition, you can determine the components or the magnitude and direction of a vector.
Step 1. Identify the x- and y-axes that will be used in the problem. Then, find the components of each vector to be added along
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the chosen perpendicular axes. Use the equations Ay = A cos 6 and Ay = A sin @ to find the components. In Figure 3.31,
these components are Ay, Ay, By, and By. The angles that vectors A and B make with the x-axis are 6, and 0y,

respectively.

4
B, !
N [y
A,
W E -t :
S

Figure 3.31 To add vectors A and B, first determine the horizontal and vertical components of each vector. These are the dotted vectors Ax ,

Ay, Bx and By shown in the image.

Step 2. Find the components of the resultant along each axis by adding the components of the individual vectors along that axis.
That is, as shown in Figure 3.32,

R,=A,+B, (3.12)
and
R, (3.13)
b
W, B,
+ ! :
q::‘ ! i
TR
N i A
53
W E beooned
X
5

Figure 3.32 The magnitude of the vectors Ax and Bx add to give the magnitude Rx of the resultant vector in the horizontal direction. Similarly,

the magnitudes of the vectors Ay and By add to give the magnitude Ry of the resultant vector in the vertical direction.

Components along the same axis, say the x-axis, are vectors along the same line and, thus, can be added to one another like
ordinary numbers. The same is true for components along the y-axis. (For example, a 9-block eastward walk could be taken in
two legs, the first 3 blocks east and the second 6 blocks east, for a total of 9, because they are along the same direction.) So
resolving vectors into components along common axes makes it easier to add them. Now that the components of R are known,
its magnitude and direction can be found.

Step 3. To get the magnitude R of the resultant, use the Pythagorean theorem:

R=1R>+R2. (3.14)

Step 4. To get the direction of the resultant:
0 =tan"(R,/R,). (3.15)

The following example illustrates this technique for adding vectors using perpendicular components.
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Example 3.3 Adding Vectors Using Analytical Methods

Add the vector A to the vector B shown in Figure 3.33, using perpendicular components along the x- and y-axes. The x-
and y-axes are along the east-west and north—south directions, respectively. Vector A represents the first leg of a walk in
which a person walks 53.0 m in a direction 20.0° north of east. Vector B represents the second leg, a displacement of
34.0 m in a direction 63.0° north of east.

¥i

Figure 3.33 Vector A has magnitude 53.0 m and direction 20.0 ® north of the x-axis. Vector B has magnitude 34.0 m and direction

63.0° north of the x-axis. You can use analytical methods to determine the magnitude and direction of R .

Strategy

The components of A and B along the x- and y-axes represent walking due east and due north to get to the same ending
point. Once found, they are combined to produce the resultant.

Solution

Following the method outlined above, we first find the components of A and B along the x- and y-axes. Note that
A=530m, 6, =20.0°, B=34.0m, and g = 63.0°. We find the x-components by using A, = A cos @, which

gives

Ay = Acos = (53.0m)(cos 20.0°) (3.16)
= (53.0 m)(0.940) = 49.8 m
and
By = Bcosfg = (34.0 m)(cos 63.0°) (3.17)

= (34.0 m)(0.454) = 15.4 m.

Similarly, the y-components are found using Ay = A sin @, :

Ay = Asin6, = (53.0 m)(sin 20.0°) (3.18)
= (53.0m)(0.342) = 18.1 m
and
By = Bsinfy = (34.0 m)(sin 63.0°) (3.19)

(34.0 m)(0.891) = 30.3 m.

The x- and y-components of the resultant are thus
Ry,=A,+B,=498m+ 154 m=652m (3.20)

and
Ry=A,+By=18.1m+30.3m=484m. (3.21)

Now we can find the magnitude of the resultant by using the Pythagorean theorem:

R= \/R% +R} = V(65.2)% + (48.4)? m (3.22)

so that
R =281.2m. (3.23)
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Finally, we find the direction of the resultant:

0 = tan~ (R, /R,)=+tan~1(48.4/65.2). (3.24)
Thus,
0 = tan~1(0.742) = 36.6 °. (3.25)
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R,= A, + B,=652m

Figure 3.34 Using analytical methods, we see that the magnitude of R is 81.2 m and its direction is 36.6° north of east.

Discussion

This example illustrates the addition of vectors using perpendicular components. Vector subtraction using perpendicular
components is very similar—it is just the addition of a negative vector.

Subtraction of vectors is accomplished by the addition of a negative vector. Thatis, A — B = A + (-B) . Thus, the method
for the subtraction of vectors using perpendicular components is identical to that for addition. The components of —B are
the negatives of the components of B . The x- and y-components of the resultant A — B = R are thus

Ry=Ax+(-By (3.26)
and

Ry=Ay+(-B,) (3.27)

and the rest of the method outlined above is identical to that for addition. (See Figure 3.35.)

Analyzing vectors using perpendicular components is very useful in many areas of physics, because perpendicular quantities are
often independent of one another. The next module, Projectile Motion, is one of many in which using perpendicular components
helps make the picture clear and simplifies the physics.
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Figure 3.35 The subtraction of the two vectors shown in Figure 3.30. The components of —B are the negatives of the components of B . The
method of subtraction is the same as that for addition.

PhET Explorations: Vector Addition

Learn how to add vectors. Drag vectors onto a graph, change their length and angle, and sum them together. The
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magnitude, angle, and components of each vector can be displayed in several formats.

PhET Interactive Simulation

Figure 3.36 Vector Addition (http://cnx.org/content/m54783/1.2/vector-addition_en.jar)

3.4 Projectile Motion

Learning Objectives

By the end of this section, you will be able to:

« Identify and explain the properties of a projectile, such as acceleration due to gravity, range, maximum height, and
trajectory.

« Determine the location and velocity of a projectile at different points in its trajectory.

« Apply the principle of independence of motion to solve projectile motion problems.

The information presented in this section supports the following AP® learning objectives:

« 3.A.1.1 The student is able to express the motion of an object using narrative, mathematical, and graphical
representations. (S.P. 1.5, 2.1, 2.2)

« 3.A.1.3 The student is able to analyze experimental data describing the motion of an object and is able to express the
results of the analysis using narrative, mathematical, and graphical representations. (S.P. 5.1)

Projectile motion is the motion of an object thrown or projected into the air, subject to only the acceleration of gravity. The
object is called a projectile, and its path is called its trajectory. The motion of falling objects, as covered in Problem-Solving
Basics for One-Dimensional Kinematics, is a simple one-dimensional type of projectile motion in which there is no horizontal
movement. In this section, we consider two-dimensional projectile motion, such as that of a football or other object for which air
resistance is negligible.

The most important fact to remember here is that motions along perpendicular axes are independent and thus can be analyzed
separately. This fact was discussed in Kinematics in Two Dimensions: An Introduction, where vertical and horizontal motions
were seen to be independent. The key to analyzing two-dimensional projectile motion is to break it into two motions, one along
the horizontal axis and the other along the vertical. (This choice of axes is the most sensible, because acceleration due to gravity
is vertical—thus, there will be no acceleration along the horizontal axis when air resistance is negligible.) As is customary, we call
the horizontal axis the x-axis and the vertical axis the y-axis. Figure 3.37 illustrates the notation for displacement, where s is

defined to be the total displacement and X and y are its components along the horizontal and vertical axes, respectively. The
magnitudes of these vectors are s, x, and y. (Note that in the last section we used the notation A to represent a vector with
components A, and Ay. If we continued this format, we would call displacement s with components sy and s, . However, to
simplify the notation, we will simply represent the component vectors as X and y .)

Of course, to describe motion we must deal with velocity and acceleration, as well as with displacement. We must find their
components along the x- and y-axes, too. We will assume all forces except gravity (such as air resistance and friction, for
example) are negligible. The components of acceleration are then very simple: ay, = —g = — 9.80 m/s?. (Note that this

definition assumes that the upwards direction is defined as the positive direction. If you arrange the coordinate system instead
such that the downwards direction is positive, then acceleration due to gravity takes a positive value.) Because gravity is vertical,
a, = 0. Both accelerations are constant, so the kinematic equations can be used.

Review of Kinematic Equations (constant a )

xX=xy+ vt (3.28)
5 vg+Vv (3.29)
2
v=vg+at (3.30)
X=Xxg+vol+ %at2 i)

2

Vo= v% + 2a(x — x). (3.32)
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2 n .
X X

Figure 3.37 The total displacement S of a soccer ball at a point along its path. The vector § has components X and Yy along the horizontal and

vertical axes. Its magnitude is § , and it makes an angle @ with the horizontal.

Given these assumptions, the following steps are then used to analyze projectile motion:

Step 1. Resolve or break the motion into horizontal and vertical components along the x- and y-axes. These axes are
perpendicular, so A, = A cos 6 and Ay = A sin 6 are used. The magnitude of the components of displacement s along
these axes are x and y. The magnitudes of the components of the velocity v are v, = v cos 8 and Vy =V sin O, where v
is the magnitude of the velocity and @ is its direction, as shown in Figure 3.38. Initial values are denoted with a subscript 0, as
usual.

Step 2. Treat the motion as two independent one-dimensional motions, one horizontal and the other vertical. The kinematic
equations for horizontal and vertical motion take the following forms:

Horizontal Motion(a, = 0) (3.33)

X =X+ vyl (3.34)

Vx = Vg, = vy = velocity is a constant. (3.35)

Vertical Motion(assuming positive is up ay, = —g = —9.80m/s?) (336)
3.37

y =)/0+%(V0y+vy)t (3.37)

Vy=Vgy— gt (3.38)

3.39

¥ = Yo+ vyt — St (3:39)

2 2 (3.40)

vy = Vi, = 280 = yo)-

Step 3. Solve for the unknowns in the two separate motions—one horizontal and one vertical. Note that the only common
variable between the motions is time ¢ . The problem solving procedures here are the same as for one-dimensional kinematics

and are illustrated in the solved examples below.

Step 4. Recombine the two motions to find the total displacement s and velocity v . Because the x - and y -motions are
perpendicular, we determine these vectors by using the techniques outlined in the Vector Addition and Subtraction: Analytical

Methods and employing A = \/A% + A% and 0 = tan_l(Ay/Ax) in the following form, where @ is the direction of the
displacement s and @, is the direction of the velocity Vv :
Total displacement and velocity
. m (3.41)
6 =tan"'(y/x) (3.42)

V= Vv% + v% (343)

0, = tan" (v, /vy). (3.44)

This OpenStax book is available for free at http://cnx.org/content/col11844/1.14
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Figure 3.38 (a) We analyze two-dimensional projectile motion by breaking it into two independent one-dimensional motions along the vertical and
horizontal axes. (b) The horizontal motion is simple, because dy = 0 and Vx is thus constant. (c) The velocity in the vertical direction begins to

decrease as the object rises; at its highest point, the vertical velocity is zero. As the object falls towards the Earth again, the vertical velocity increases
again in magnitude but points in the opposite direction to the initial vertical velocity. (d) The x - and y -motions are recombined to give the total velocity
at any given point on the trajectory.

Example 3.4 A Fireworks Projectile Explodes High and Away

During a fireworks display, a shell is shot into the air with an initial speed of 70.0 m/s at an angle of 75.0° above the
horizontal, as illustrated in Figure 3.39. The fuse is timed to ignite the shell just as it reaches its highest point above the
ground. (a) Calculate the height at which the shell explodes. (b) How much time passed between the launch of the shell and
the explosion? (c) What is the horizontal displacement of the shell when it explodes?

Strategy
Because air resistance is negligible for the unexploded shell, the analysis method outlined above can be used. The motion
can be broken into horizontal and vertical motions in which a, = 0 and ay = — g .We can then define x, and y( to be

zero and solve for the desired quantities.
Solution for (a)
By “height” we mean the altitude or vertical position y above the starting point. The highest point in any trajectory, called the
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apex, is reached when vy, = 0. Since we know the initial and final velocities as well as the initial position, we use the

following equation to find y:

(3.45)

vy =vg, — 280 = Yo)-

-

\90 = 75°

x=125m X
Figure 3.39 The trajectory of a fireworks shell. The fuse is set to explode the shell at the highest point in its trajectory, which is found to be at a
height of 233 m and 125 m away horizontally.

Because yq and vy are both zero, the equation simplifies to

2 .
0= Voy = 2gy. (3.46)
Solving for y gives
2 3.47
_Y o4

Now we must find Voy the component of the initial velocity in the y-direction. It is given by Yoy = Vo sin @, where Yoy is

the initial velocity of 70.0 m/s, and 8 = 75.0° is the initial angle. Thus,

Vgy = Vg sin € = (70.0 m/s)(sin 75°) = 67.6 m/s. (3.48)
and y is
_ (67.6 m/s)? (8-49)
2(9.80 m/s?)’
so that
y = 233m. (3.50)

Discussion for (a)

Note that because up is positive, the initial velocity is positive, as is the maximum height, but the acceleration due to gravity
is negative. Note also that the maximum height depends only on the vertical component of the initial velocity, so that any
projectile with a 67.6 m/s initial vertical component of velocity will reach a maximum height of 233 m (neglecting air
resistance). The numbers in this example are reasonable for large fireworks displays, the shells of which do reach such
heights before exploding. In practice, air resistance is not completely negligible, and so the initial velocity would have to be
somewhat larger than that given to reach the same height.

Solution for (b)
As in many physics problems, there is more than one way to solve for the time to the highest point. In this case, the easiest

method isto use y = yg + %(VOy + vy)t. Because ) is zero, this equation reduces to simply

y=Log,+ vy, @5

This OpenStax book is available for free at http://cnx.org/content/col11844/1.14
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Note that the final vertical velocity, vy, at the highest point is zero. Thus,

;= 2y _ 2(233m) (3.52)
(voy +vy) ~ (67.6 m/s)
= 6.90s.

Discussion for (b)
This time is also reasonable for large fireworks. When you are able to see the launch of fireworks, you will notice several

seconds pass before the shell explodes. (Another way of finding the time is by using y = y + Voyt = %gt2 , and solving

the quadratic equation for 7 .)
Solution for (c)

Because air resistance is negligible, a, = 0 and the horizontal velocity is constant, as discussed above. The horizontal
displacement is horizontal velocity multiplied by time as given by x = x + v, where X is equal to zero:

X = Vy, (3.53)
where v, is the x-component of the velocity, which is given by vy = v cos 6. Now,
Vx = Vg cos O = (70.0 m/s)(cos 75.0°) = 18.1 m/s. (3.54)

The time ¢ for both motions is the same, and so x is
x = (18.1 m/s)(6.90 s) = 125 m. (3.55)

Discussion for (c)

The horizontal motion is a constant velocity in the absence of air resistance. The horizontal displacement found here could
be useful in keeping the fireworks fragments from falling on spectators. Once the shell explodes, air resistance has a major
effect, and many fragments will land directly below.

In solving part (a) of the preceding example, the expression we found for y is valid for any projectile motion where air resistance

is negligible. Call the maximum height y = & ; then,

2 3.56
2, (3.56)
h ===
2g
This equation defines the maximum height of a projectile and depends only on the vertical component of the initial velocity.

Defining a Coordinate System

It is important to set up a coordinate system when analyzing projectile motion. One part of defining the coordinate system is
to define an origin for the x and y positions. Often, it is convenient to choose the initial position of the object as the origin

such that xo =0 and yy = 0. Itis also important to define the positive and negative directions in the x and y directions.

Typically, we define the positive vertical direction as upwards, and the positive horizontal direction is usually the direction of
the object's motion. When this is the case, the vertical acceleration, g, takes a negative value (since it is directed

downwards towards the Earth). However, it is occasionally useful to define the coordinates differently. For example, if you
are analyzing the motion of a ball thrown downwards from the top of a cliff, it may make sense to define the positive direction
downwards since the motion of the ball is solely in the downwards direction. If this is the case, g takes a positive value.

Example 3.5 Calculating Projectile Motion: Hot Rock Projectile

Kilauea in Hawaii is the world's most continuously active volcano. Very active volcanoes characteristically eject red-hot rocks
and lava rather than smoke and ash. Suppose a large rock is ejected from the volcano with a speed of 25.0 m/s and at an
angle 35.0° above the horizontal, as shown in Figure 3.40. The rock strikes the side of the volcano at an altitude 20.0 m
lower than its starting point. (a) Calculate the time it takes the rock to follow this path. (b) What are the magnitude and
direction of the rock's velocity at impact?
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Figure 3.40 The trajectory of a rock ejected from the Kilauea volcano.

Strategy

Again, resolving this two-dimensional motion into two independent one-dimensional motions will allow us to solve for the
desired quantities. The time a projectile is in the air is governed by its vertical motion alone. We will solve for ¢ first. While

the rock is rising and falling vertically, the horizontal motion continues at a constant velocity. This example asks for the final
velocity. Thus, the vertical and horizontal results will be recombined to obtain v and 6, at the final time ¢ determined in

the first part of the example.
Solution for (a)

While the rock is in the air, it rises and then falls to a final position 20.0 m lower than its starting altitude. We can find the time
for this by using

Y =Yo+voyt - %gtz. (3:57)

If we take the initial position y, to be zero, then the final position is y = —20.0 m. Now the initial vertical velocity is the
vertical component of the initial velocity, found from v, = vq sin 6 = (25.0 m/s )(sin 35.0°) = 14.3 m/s . Substituting

known values yields

~20.0 m = (14.3 m/s)t — (4.90 m/s?)r*. k)
Rearranging terms gives a quadratic equation in 7:
(4.90 m/s?)? — (14.3 m/s)t — (20.0 m) = 0. (3.59)
This expression is a quadratic equation of the form at* + bt + ¢ = 0, where the constants are a = 4.90, b= — 14.3,
and ¢ = —20.0. Its solutions are given by the quadratic formula:
i =b+b®— dac (3.60)
2a ’
This equation yields two solutions: ¢ = 3.96 and t = — 1.03. (Iltis left as an exercise for the reader to verify these

solutions.) The time is = 3.96 s or — 1.03 s. The negative value of time implies an event before the start of motion, and
so we discard it. Thus,

t=3.96s. (3.61)

Discussion for (a)

The time for projectile motion is completely determined by the vertical motion. So any projectile that has an initial vertical
velocity of 14.3 m/s and lands 20.0 m below its starting altitude will spend 3.96 s in the air.

Solution for (b)
From the information now in hand, we can find the final horizontal and vertical velocities vy and vy, and combine them to
find the total velocity v and the angle 6, it makes with the horizontal. Of course, v, is constant so we can solve for it at

any horizontal location. In this case, we chose the starting point since we know both the initial velocity and initial angle.
Therefore:

vy = v cos 0 = (25.0 m/s)(cos 35°) = 20.5 m/s. (3.62)

The final vertical velocity is given by the following equation:
Vy =V, — gt, (3.63)

This OpenStax book is available for free at http://cnx.org/content/col11844/1.14
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where v, was found in part () to be 14.3 m/s . Thus,

vy = 14.3 m/s — (9.80 m/s%)(3.96 5) (3.64)

so that
vy = —=24.5 m/s. (3.65)

To find the magnitude of the final velocity v we combine its perpendicular components, using the following equation:

v =12 +v2 =1(20.5 m/s)> + (- 245 m/s)2, (3.66)
which gives
v =319 m/s. (3.67)
The direction @), is found from the equation:
0, =tan"'(vy/vy) (3.68)
so that
0, = tan~!( - 24.5/20.5) = tan~!( - 1.19). (3.69)
Thus,
6, =-50.1°. (3.70)

Discussion for (b)

The negative angle means that the velocity is 50.1° below the horizontal. This result is consistent with the fact that the final

vertical velocity is negative and hence downward—as you would expect because the final altitude is 20.0 m lower than the
initial altitude. (See Figure 3.40.)

One of the most important things illustrated by projectile motion is that vertical and horizontal motions are independent of each
other. Galileo was the first person to fully comprehend this characteristic. He used it to predict the range of a projectile. On level
ground, we define range to be the horizontal distance R traveled by a projectile. Galileo and many others were interested in the
range of projectiles primarily for military purposes—such as aiming cannons. However, investigating the range of projectiles can
shed light on other interesting phenomena, such as the orbits of satellites around the Earth. Let us consider projectile range
further.

l—R=91.8m-=|
fe———— R =163 m———=

fp————————R=255m ——«———]
(@)

15
[#=——R=128m

R=256m——— |

(b)
Figure 3.41 Trajectories of projectiles on level ground. (a) The greater the initial speed V), the greater the range for a given initial angle. (b) The
effect of initial angle @y on the range of a projectile with a given initial speed. Note that the range is the same for 15° and 75°, although the

maximum heights of those paths are different.
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How does the initial velocity of a projectile affect its range? Obviously, the greater the initial speed v, the greater the range, as
shown in Figure 3.41(a). The initial angle 8, also has a dramatic effect on the range, as illustrated in Figure 3.41(b). For a fixed
initial speed, such as might be produced by a cannon, the maximum range is obtained with 6 = 45° . This is true only for

conditions neglecting air resistance. If air resistance is considered, the maximum angle is approximately 38° . Interestingly, for
every initial angle except 45°, there are two angles that give the same range—the sum of those angles is 90° . The range also
depends on the value of the acceleration of gravity g . The lunar astronaut Alan Shepherd was able to drive a golf ball a great

distance on the Moon because gravity is weaker there. The range R of a projectile on level ground for which air resistance is
negligible is given by
R— V% sin 20, (3.71)
g 9
where v, is the initial speed and 6, is the initial angle relative to the horizontal. The proof of this equation is left as an end-of-
chapter problem (hints are given), but it does fit the major features of projectile range as described.

When we speak of the range of a projectile on level ground, we assume that R is very small compared with the circumference of
the Earth. If, however, the range is large, the Earth curves away below the projectile and acceleration of gravity changes
direction along the path. The range is larger than predicted by the range equation given above because the projectile has farther
to fall than it would on level ground. (See Figure 3.42.) If the initial speed is great enough, the projectile goes into orbit. This
possibility was recognized centuries before it could be accomplished. When an object is in orbit, the Earth curves away from
underneath the object at the same rate as it falls. The object thus falls continuously but never hits the surface. These and other
aspects of orbital motion, such as the rotation of the Earth, will be covered analytically and in greater depth later in this text.

Once again we see that thinking about one topic, such as the range of a projectile, can lead us to others, such as the Earth
orbits. In Addition of Velocities, we will examine the addition of velocities, which is another important aspect of two-dimensional
kinematics and will also yield insights beyond the immediate topic.

Figure 3.42 Projectile to satellite. In each case shown here, a projectile is launched from a very high tower to avoid air resistance. With increasing
initial speed, the range increases and becomes longer than it would be on level ground because the Earth curves away underneath its path. With a
large enough initial speed, orbit is achieved.

PhET Explorations: Projectile Motion

Blast a Buick out of a cannon! Learn about projectile motion by firing various objects. Set the angle, initial speed, and mass.
Add air resistance. Make a game out of this simulation by trying to hit a target.

PhET Interactive Simulation

Figure 3.43 Projectile Motion (http://cnx.org/content/m54787/1.4/projectile-motion_en.jar)
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3.5 Addition of Velocities

Learning Objectives

By the end of this section, you will be able to:

« Apply principles of vector addition to determine relative velocity.
« Explain the significance of the observer in the measurement of velocity.

The information presented in this section supports the following AP® learning objectives and science practices:

* 3.A.1.1 The student is able to express the motion of an object using narrative, mathematical, and graphical
representations. (S.P. 1.5, 2.1, 2.2)

« 3.A.1.3 The student is able to analyze experimental data describing the motion of an object and is able to express the
results of the analysis using narrative, mathematical, and graphical representations. (S.P. 5.1)

Relative Velocity

If a person rows a boat across a rapidly flowing river and tries to head directly for the other shore, the boat instead moves
diagonally relative to the shore, as in Figure 3.44. The boat does not move in the direction in which it is pointed. The reason, of
course, is that the river carries the boat downstream. Similarly, if a small airplane flies overhead in a strong crosswind, you can
sometimes see that the plane is not moving in the direction in which it is pointed, as illustrated in Figure 3.45. The plane is
moving straight ahead relative to the air, but the movement of the air mass relative to the ground carries it sideways.

Figure 3.44 A boat trying to head straight across a river will actually move diagonally relative to the shore as shown. Its total velocity (solid arrow)
relative to the shore is the sum of its velocity relative to the river plus the velocity of the river relative to the shore.
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\

¥ (north)

x (east) “

Figure 3.45 An airplane heading straight north is instead carried to the west and slowed down by wind. The plane does not move relative to the ground
in the direction it points; rather, it moves in the direction of its total velocity (solid arrow).

In each of these situations, an object has a velocity relative to a medium (such as a river) and that medium has a velocity
relative to an observer on solid ground. The velocity of the object relative to the observer is the sum of these velocity vectors, as
indicated in Figure 3.44 and Figure 3.45. These situations are only two of many in which it is useful to add velocities. In this
module, we first re-examine how to add velocities and then consider certain aspects of what relative velocity means.

How do we add velocities? Velocity is a vector (it has both magnitude and direction); the rules of vector addition discussed in
Vector Addition and Subtraction: Graphical Methods and Vector Addition and Subtraction: Analytical Methods apply to
the addition of velocities, just as they do for any other vectors. In one-dimensional motion, the addition of velocities is
simple—they add like ordinary numbers. For example, if a field hockey player is moving at 5 m/s straight toward the goal and
drives the ball in the same direction with a velocity of 30 m/s relative to her body, then the velocity of the ball is 35 m/s relative
to the stationary, profusely sweating goalkeeper standing in front of the goal.

In two-dimensional motion, either graphical or analytical techniques can be used to add velocities. We will concentrate on
analytical techniques. The following equations give the relationships between the magnitude and direction of velocity (v and 6)
and its components (v, and v, ) along the x- and y-axes of an appropriately chosen coordinate system:

vy =vcosf (3.72)
vy =vsinf (3.73)
V= \/v% + v§ (3.74)
0= tan_l(vy/vx). (3.75)

Y

A
v i
' Vy
l
6 |
D —
Vv, X

Figure 3.46 The velocity, V , of an object traveling at an angle @ to the horizontal axis is the sum of component vectors V, and Vy.

These equations are valid for any vectors and are adapted specifically for velocity. The first two equations are used to find the
components of a velocity when its magnitude and direction are known. The last two are used to find the magnitude and direction
of velocity when its components are known.
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Take-Home Experiment: Relative Velocity of a Boat

Fill a bathtub half-full of water. Take a toy boat or some other object that floats in water. Unplug the drain so water starts to
drain. Try pushing the boat from one side of the tub to the other and perpendicular to the flow of water. Which way do you
need to push the boat so that it ends up immediately opposite? Compare the directions of the flow of water, heading of the
boat, and actual velocity of the boat.

Example 3.6 Adding Velocities: A Boat on a River

Vhcat

Vioat = 0.75 m/s

X

Figure 3.47 A boat attempts to travel straight across a river at a speed 0.75 m/s. The current in the river, however, flows at a speed of 1.20 m/s to
the right. What is the total displacement of the boat relative to the shore?

Refer to Figure 3.47, which shows a boat trying to go straight across the river. Let us calculate the magnitude and direction
of the boat's velocity relative to an observer on the shore, v . The velocity of the boat, V., is 0.75 m/sinthe y

-direction relative to the river and the velocity of the river, v is 1.20 m/s to the right.

river '

Strategy

We start by choosing a coordinate system with its x -axis parallel to the velocity of the river, as shown in Figure 3.47.
Because the boat is directed straight toward the other shore, its velocity relative to the water is parallel to the y -axis and

perpendicular to the velocity of the river. Thus, we can add the two velocities by using the equations v, = \/v% + v% and
0= tan_l(vy/vx) directly.

Solution
The magnitude of the total velocity is

b2 2 (3.76)
Viot = |vx + vy,

where
Vy = Vyiver = 1.20 m/s 3.77)
and
Vy = Vpoat = 0.750 m/s. (3.78)
Thus,
Viot = V(I-ZO IU/S)2 + (0.750 m/s)2 (3.79)
yielding
Vior = 1.42 mis. (3.80)

The direction of the total velocity @ is given by:
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0 =tan"'(vy/vy) = tan~1(0.750/1.20). (3:81)

This equation gives
0 =32.0° (3.82)

Discussion

Both the magnitude v and the direction @ of the total velocity are consistent with Figure 3.47. Note that because the
velocity of the river is large compared with the velocity of the boat, it is swept rapidly downstream. This result is evidenced
by the small angle (only 32.0°) the total velocity has relative to the riverbank.

Example 3.7 Calculating Velocity: Wind Velocity Causes an Airplane to Drift

Calculate the wind velocity for the situation shown in Figure 3.48. The plane is known to be moving at 45.0 m/s due north
relative to the air mass, while its velocity relative to the ground (its total velocity) is 38.0 m/s in a direction 20.0° west of
north.

Vit = 38.0 m/s

oA
v
L Vo
v, =45.0m/s

y (north)

X (east)

Figure 3.48 An airplane is known to be heading north at 45.0 m/s, though its velocity relative to the ground is 38.0 m/s at an angle west of north.
What is the speed and direction of the wind?

Strategy

In this problem, somewhat different from the previous example, we know the total velocity v, and that it is the sum of two
other velocities, Vy, (the wind) and v, (the plane relative to the air mass). The quantity v, is known, and we are asked to
find vy, . None of the velocities are perpendicular, but it is possible to find their components along a common set of
perpendicular axes. If we can find the components of vy, , then we can combine them to solve for its magnitude and

direction. As shown in Figure 3.48, we choose a coordinate system with its x-axis due east and its y-axis due north (parallel
to vp). (You may wish to look back at the discussion of the addition of vectors using perpendicular components in Vector

Addition and Subtraction: Analytical Methods.)
Solution

Because Vi is the vector sum of the vy, and vy, its x- and y-components are the sums of the x- and y-components of
the wind and plane velocities. Note that the plane only has vertical component of velocity so vpy = 0 and Vpy = Vp . That
is,

Viotx = Vwx (3.83)

and
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Vioty = Vwy T Vp- (3.84)

We can use the first of these two equations to find v :

Vwx = Viotx = Viot€0s 110°. (3.85)
Because Vi, = 38.0m/s and cos 110° = — 0.342 we have
Vwx = (38.0 m/s)(—0.342)=-13.0 m/s. (3.86)

The minus sign indicates motion west which is consistent with the diagram.
Now, to find vy, we note that

Vioty = Vwy T Vp (3.87)
Here Vi, = Vigsin 110°; thus,
Vwy = (38.0 m/s)(0.940) — 45.0 m/s = —9.29 m/s. (3.88)

This minus sign indicates motion south which is consistent with the diagram.
Now that the perpendicular components of the wind velocity vy and v,y are known, we can find the magnitude and

direction of vy, . First, the magnitude is

N (3.89)
Viwx T Viwy

Ve =
= (= 13.0m/s)2 + (= 9.29 m/s)2
so that
Ve = 16.0 m/s. (3.90)
The direction is:
0 = tan~!(Vyyy/ vyy) = tan~1( = 9.29/~13.0) (3.9)
giving
0 = 35.6°. (3.92)
Discussion

The wind's speed and direction are consistent with the significant effect the wind has on the total velocity of the plane, as
seen in Figure 3.48. Because the plane is fighting a strong combination of crosswind and head-wind, it ends up with a total
velocity significantly less than its velocity relative to the air mass as well as heading in a different direction.

Note that in both of the last two examples, we were able to make the mathematics easier by choosing a coordinate system with
one axis parallel to one of the velocities. We will repeatedly find that choosing an appropriate coordinate system makes problem
solving easier. For example, in projectile motion we always use a coordinate system with one axis parallel to gravity.

Relative Velocities and Classical Relativity

When adding velocities, we have been careful to specify that the velocity is relative to some reference frame. These velocities
are called relative velocities. For example, the velocity of an airplane relative to an air mass is different from its velocity relative
to the ground. Both are quite different from the velocity of an airplane relative to its passengers (which should be close to zero).
Relative velocities are one aspect of relativity, which is defined to be the study of how different observers moving relative to
each other measure the same phenomenon.

Nearly everyone has heard of relativity and immediately associates it with Albert Einstein (1879-1955), the greatest physicist of
the 20th century. Einstein revolutionized our view of nature with his modern theory of relativity, which we shall study in later
chapters. The relative velocities in this section are actually aspects of classical relativity, first discussed correctly by Galileo and
Isaac Newton. Classical relativity is limited to situations where speeds are less than about 1% of the speed of light—that is,
less than 3,000 km/s . Most things we encounter in daily life move slower than this speed.

Let us consider an example of what two different observers see in a situation analyzed long ago by Galileo. Suppose a sailor at
the top of a mast on a moving ship drops his binoculars. Where will it hit the deck? Will it hit at the base of the mast, or will it hit
behind the mast because the ship is moving forward? The answer is that if air resistance is negligible, the binoculars will hit at
the base of the mast at a point directly below its point of release. Now let us consider what two different observers see when the
binoculars drop. One observer is on the ship and the other on shore. The binoculars have no horizontal velocity relative to the
observer on the ship, and so he sees them fall straight down the mast. (See Figure 3.49.) To the observer on shore, the
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binoculars and the ship have the same horizontal velocity, so both move the same distance forward while the binoculars are
falling. This observer sees the curved path shown in Figure 3.49. Although the paths look different to the different observers,
each sees the same result—the binoculars hit at the base of the mast and not behind it. To get the correct description, it is crucial

to correctly specify the velocities relative to the observer.

£

Figure 3.49 Classical relativity. The same motion as viewed by two different observers. An observer on the moving ship sees the binoculars dropped
from the top of its mast fall straight down. An observer on shore sees the binoculars take the curved path, moving forward with the ship. Both observers
see the binoculars strike the deck at the base of the mast. The initial horizontal velocity is different relative to the two observers. (The ship is shown

moving rather fast to emphasize the effect.)

Example 3.8 Calculating Relative Velocity: An Airline Passenger Drops a Coin

An airline passenger drops a coin while the plane is moving at 260 m/s. What is the velocity of the coin when it strikes the
floor 1.50 m below its point of release: (a) Measured relative to the plane? (b) Measured relative to the Earth?

&

(b}

Figure 3.50 The motion of a coin dropped inside an airplane as viewed by two different observers. (a) An observer in the plane sees the coin fall
straight down. (b) An observer on the ground sees the coin move almost horizontally.

Strategy

Both problems can be solved with the techniques for falling objects and projectiles. In part (a), the initial velocity of the coin
is zero relative to the plane, so the motion is that of a falling object (one-dimensional). In part (b), the initial velocity is 260 m/
s horizontal relative to the Earth and gravity is vertical, so this motion is a projectile motion. In both parts, it is best to use a
coordinate system with vertical and horizontal axes.
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Solution for (a)

Using the given information, we note that the initial velocity and position are zero, and the final position is 1.50 m. The final
velocity can be found using the equation:

v = V0y2 — 28— yp). (3.93)
Substituting known values into the equation, we get
vy? = 0% —2(9.80 m/s?)( — 1.50 m — 0 m) = 29.4 m?/s? (3.94)
yielding
vy =—5.42 m/s. (3.95)

We know that the square root of 29.4 has two roots: 5.42 and -5.42. We choose the negative root because we know that the
velocity is directed downwards, and we have defined the positive direction to be upwards. There is no initial horizontal
velocity relative to the plane and no horizontal acceleration, and so the motion is straight down relative to the plane.

Solution for (b)

Because the initial vertical velocity is zero relative to the ground and vertical motion is independent of horizontal motion, the
final vertical velocity for the coin relative to the ground is vy, = — 5.42 m/s , the same as found in part (a). In contrast to

part (a), there now is a horizontal component of the velocity. However, since there is no horizontal acceleration, the initial
and final horizontal velocities are the same and v, = 260 m/s . The x- and y-components of velocity can be combined to

V= vaz + vy2. S

find the magnitude of the final velocity:

Thus,
v = 1260 m/s)2 + (= 5.42 ms)2 (3.97)
yielding
v = 260.06 m/s. (3.98)
The direction is given by:
0 =tan"'(vy/v,) = tan~ (- 5.42/260) (3.99)
so that
0 = tan"!( — 0.0208) = —1.19°. (3.100)
Discussion

In part (a), the final velocity relative to the plane is the same as it would be if the coin were dropped from rest on the Earth
and fell 1.50 m. This result fits our experience; objects in a plane fall the same way when the plane is flying horizontally as
when it is at rest on the ground. This result is also true in moving cars. In part (b), an observer on the ground sees a much
different motion for the coin. The plane is moving so fast horizontally to begin with that its final velocity is barely greater than
the initial velocity. Once again, we see that in two dimensions, vectors do not add like ordinary numbers—the final velocity v
in part (b) is not (260 — 5.42) m/s ; rather, itis 260.06 m/s . The velocity's magnitude had to be calculated to five digits to
see any difference from that of the airplane. The motions as seen by different observers (one in the plane and one on the
ground) in this example are analogous to those discussed for the binoculars dropped from the mast of a moving ship, except
that the velocity of the plane is much larger, so that the two observers see very different paths. (See Figure 3.50.) In
addition, both observers see the coin fall 1.50 m vertically, but the one on the ground also sees it move forward 144 m (this
calculation is left for the reader). Thus, one observer sees a vertical path, the other a nearly horizontal path.

Making Connections: Relativity and Einstein

Because Einstein was able to clearly define how measurements are made (some involve light) and because the speed
of light is the same for all observers, the outcomes are spectacularly unexpected. Time varies with observer, energy is
stored as increased mass, and more surprises await.

PhET Explorations: Motion in 2D

Try the new "Ladybug Motion 2D" simulation for the latest updated version. Learn about position, velocity, and acceleration
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vectors. Move the ball with the mouse or let the simulation move the ball in four types of motion (2 types of linear, simple
harmonic, circle).

PhET Interactive Simulation

Figure 3.51 Motion in 2D (http://cnx.org/content/m54798/1.2/motion-2d_en.jar)

air resistance: a frictional force that slows the motion of objects as they travel through the air; when solving basic physics
problems, air resistance is assumed to be zero

analytical method: the method of determining the magnitude and direction of a resultant vector using the Pythagorean
theorem and trigonometric identities

classical relativity: the study of relative velocities in situations where speeds are less than about 1% of the speed of
light—that is, less than 3000 km/s

commutative: refers to the interchangeability of order in a function; vector addition is commutative because the order in which
vectors are added together does not affect the final sum

component (of a 2-d vector): a piece of a vector that points in either the vertical or the horizontal direction; every 2-d vector
can be expressed as a sum of two vertical and horizontal vector components

direction (of a vector): the orientation of a vector in space

head (of a vector): the end point of a vector; the location of the tip of the vector's arrowhead; also referred to as the “tip”
head-to-tail method: a method of adding vectors in which the tail of each vector is placed at the head of the previous vector
kinematics: the study of motion without regard to mass or force

maghnitude (of a vector): the length or size of a vector; magnitude is a scalar quantity

motion: displacement of an object as a function of time

projectile: an object that travels through the air and experiences only acceleration due to gravity

projectile motion: the motion of an object that is subject only to the acceleration of gravity

range: the maximum horizontal distance that a projectile travels

relative velocity: the velocity of an object as observed from a particular reference frame

relativity: the study of how different observers moving relative to each other measure the same phenomenon

resultant: the sum of two or more vectors

resultant vector: the vector sum of two or more vectors

scalar: a quantity with magnitude but no direction

tail: the start point of a vector; opposite to the head or tip of the arrow

trajectory: the path of a projectile through the air

vector: a quantity that has both magnitude and direction; an arrow used to represent quantities with both magnitude and
direction

vector addition: the rules that apply to adding vectors together

velocity: speed in a given direction
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Section Summary

3.1 Kinematics in Two Dimensions: An Introduction
« The shortest path between any two points is a straight line. In two dimensions, this path can be represented by a vector
with horizontal and vertical components.
« The horizontal and vertical components of a vector are independent of one another. Motion in the horizontal direction does
not affect motion in the vertical direction, and vice versa.

3.2 Vector Addition and Subtraction: Graphical Methods
« The graphical method of adding vectors A and B involves drawing vectors on a graph and adding them using the
head-to-tail method. The resultant vector R is defined such that A + B = R . The magnitude and direction of R are
then determined with a ruler and protractor, respectively.
« The graphical method of subtracting vector B from A involves adding the opposite of vector B, which is defined as
—B . Inthis case, A — B = A + (-B) = R.. Then, the head-to-tail method of addition is followed in the usual way to
obtain the resultant vector R.

» Addition of vectors is commutative suchthat A+ B =B + A .

« The head-to-tail method of adding vectors involves drawing the first vector on a graph and then placing the tail of each
subsequent vector at the head of the previous vector. The resultant vector is then drawn from the tail of the first vector to
the head of the final vector.

« Ifavector A is multiplied by a scalar quantity ¢, the magnitude of the product is given by cA . If ¢ is positive, the
direction of the product points in the same direction as A ; if ¢ is negative, the direction of the product points in the
opposite direction as A .

3.3 Vector Addition and Subtraction: Analytical Methods
« The analytical method of vector addition and subtraction involves using the Pythagorean theorem and trigonometric
identities to determine the magnitude and direction of a resultant vector.

« The steps to add vectors A and B using the analytical method are as follows:

Step 1: Determine the coordinate system for the vectors. Then, determine the horizontal and vertical components of each
vector using the equations

Ay, = Acosf

By = Bcosf
and

Ay = Asind

By, = Bsind.

Step 2: Add the horizontal and vertical components of each vector to determine the components R, and Ry of the
resultant vector, R :

R,=A+ B,
and

Ry=Ay+ By,

Step 3: Use the Pythagorean theorem to determine the magnitude, R, of the resultant vector R :

R =R +R;.

Step 4: Use a trigonometric identity to determine the direction, €, of R:

0 =tan"'(Ry/R,).

3.4 Projectile Motion
« Projectile motion is the motion of an object through the air that is subject only to the acceleration of gravity.
« To solve projectile motion problems, perform the following steps:

1. Determine a coordinate system. Then, resolve the position and/or velocity of the object in the horizontal and vertical
components. The components of position S are given by the quantities x and y, and the components of the velocity

v are givenby vy =vcos @ and v, =vsin @, where v is the magnitude of the velocity and & is its direction.

2. Analyze the motion of the projectile in the horizontal direction using the following equations:
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Horizontal motion(a, = 0)
X =X+ vyt

Vx = Vg, = Vx = velocity is a constant.
3. Analyze the motion of the projectile in the vertical direction using the following equations:

Vertical motion(Assuming positive direction is up; a, = —g = —9.80 m/s?)
y=yp+ %(voy + vyt
vy =g, — 8t
— 1,,2
Y=o+ Vot =781
2_ .2
vy =V, = 280 = yo)-

4. Recombine the horizontal and vertical components of location and/or velocity using the following equations:
s = \/x2 + y2

0= tan_l(y/x)

V= \/v§+ v§

0, = tan_l(vy/vx).
» The maximum height £ of a projectile launched with initial vertical velocity Yoy is given by

» The maximum horizontal distance traveled by a projectile is called the range. The range R of a projectile on level ground
launched at an angle 6, above the horizontal with initial speed v, is given by

_ v% sin 26,
-
3.5 Addition of Velocities
« Velocities in two dimensions are added using the same analytical vector techniques, which are rewritten as
vy =Vvcos @

vyzvsme

V= Vv)zc+ v§

0 =tan"'(vy/v,).

« Relative velocity is the velocity of an object as observed from a particular reference frame, and it varies dramatically with
reference frame.

« Relativity is the study of how different observers measure the same phenomenon, particularly when the observers move
relative to one another. Classical relativity is limited to situations where speed is less than about 1% of the speed of light
(3000 km/s).

Conceptual Questions

3.2 Vector Addition and Subtraction: Graphical Methods

1. Which of the following is a vector: a person's height, the altitude on Mt. Everest, the age of the Earth, the boiling point of water,
the cost of this book, the Earth's population, the acceleration of gravity?

2. Give a specific example of a vector, stating its magnitude, units, and direction.
3. What do vectors and scalars have in common? How do they differ?

This OpenStax book is available for free at http://cnx.org/content/col11844/1.14
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4. Two campers in a national park hike from their cabin to the same spot on a lake, each taking a different path, as illustrated
below. The total distance traveled along Path 1 is 7.5 km, and that along Path 2 is 8.2 km. What is the final displacement of each
camper?

Figure 3.52

5. If an airplane pilot is told to fly 123 km in a straight line to get from San Francisco to Sacramento, explain why he could end up
anywhere on the circle shown in Figure 3.53. What other information would he need to get to Sacramento?

:Qmm

Figure 3.53

6. Suppose you take two steps A and B (that is, two nonzero displacements). Under what circumstances can you end up at
your starting point? More generally, under what circumstances can two nonzero vectors add to give zero? Is the maximum
distance you can end up from the starting point A + B the sum of the lengths of the two steps?

7. Explain why it is not possible to add a scalar to a vector.

8. If you take two steps of different sizes, can you end up at your starting point? More generally, can two vectors with different
magnitudes ever add to zero? Can three or more?

3.3 Vector Addition and Subtraction: Analytical Methods

9. Suppose you add two vectors A and B . What relative direction between them produces the resultant with the greatest

magnitude? What is the maximum magnitude? What relative direction between them produces the resultant with the smallest
magnitude? What is the minimum magnitude?

10. Give an example of a nonzero vector that has a component of zero.

11. Explain why a vector cannot have a component greater than its own magnitude.

12. If the vectors A and B are perpendicular, what is the component of A along the direction of B ? What is the component
of B along the direction of A ?
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3.4 Projectile Motion

13. Answer the following questions for projectile motion on level ground assuming negligible air resistance (the initial angle being
neither 0° nor 90°): (a) Is the velocity ever zero? (b) When is the velocity a minimum? A maximum? (c) Can the velocity ever
be the same as the initial velocity at a time other than at ¢t = 0 ? (d) Can the speed ever be the same as the initial speed at a
time other thanat t = 0?

14. Answer the following questions for projectile motion on level ground assuming negligible air resistance (the initial angle being
neither 0° nor 90°): (a) Is the acceleration ever zero? (b) Is the acceleration ever in the same direction as a component of
velocity? (c) Is the acceleration ever opposite in direction to a component of velocity?

15. For a fixed initial speed, the range of a projectile is determined by the angle at which it is fired. For all but the maximum, there
are two angles that give the same range. Considering factors that might affect the ability of an archer to hit a target, such as
wind, explain why the smaller angle (closer to the horizontal) is preferable. When would it be necessary for the archer to use the
larger angle? Why does the punter in a football game use the higher trajectory?

16. During a lecture demonstration, a professor places two coins on the edge of a table. She then flicks one of the coins
horizontally off the table, simultaneously nudging the other over the edge. Describe the subsequent motion of the two coins, in
particular discussing whether they hit the floor at the same time.

3.5 Addition of Velocities
17. What frame or frames of reference do you instinctively use when driving a car? When flying in a commercial jet airplane?

18. A basketball player dribbling down the court usually keeps his eyes fixed on the players around him. He is moving fast. Why
doesn't he need to keep his eyes on the ball?

19. If someone is riding in the back of a pickup truck and throws a softball straight backward, is it possible for the ball to fall
straight down as viewed by a person standing at the side of the road? Under what condition would this occur? How would the
motion of the ball appear to the person who threw it?

20. The hat of a jogger running at constant velocity falls off the back of his head. Draw a sketch showing the path of the hat in the
jogger's frame of reference. Draw its path as viewed by a stationary observer.

21. A clod of dirt falls from the bed of a moving truck. It strikes the ground directly below the end of the truck. What is the
direction of its velocity relative to the truck just before it hits? Is this the same as the direction of its velocity relative to ground just
before it hits? Explain your answers.

This OpenStax book is available for free at http://cnx.org/content/col11844/1.14
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Problems & Exercises

3.2 Vector Addition and Subtraction: Graphical
Methods

Use graphical methods to solve these problems. You may
assume data taken from graphs is accurate to three
digits.

1. Find the following for path A in Figure 3.54: (a) the total
distance traveled, and (b) the magnitude and direction of the
displacement from start to finish.

ch III- a = 2}
- me RN
A C
= 1 m| o
™ [
Start —B

B s e W

Figure 3.54 The various lines represent paths taken by different people
walking in a city. All blocks are 120 m on a side.

2. Find the following for path B in Figure 3.54: (a) the total
distance traveled, and (b) the magnitude and direction of the
displacement from start to finish.

3. Find the north and east components of the displacement
for the hikers shown in Figure 3.52.

4. Suppose you walk 18.0 m straight west and then 25.0 m
straight north. How far are you from your starting point, and
what is the compass direction of a line connecting your
starting point to your final position? (If you represent the two
legs of the walk as vector displacements A and B, asin
Figure 3.55, then this problem asks you to find their sum
R=A+B)

Vi
A+B=R

y

—
-

A X

Figure 3.55 The two displacements A and B addto give a total

displacement R having magnitude R and direction & .
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5. Suppose you first walk 12.0 m in a direction 20° west of
north and then 20.0 m in a direction 40.0° south of west.

How far are you from your starting point, and what is the

compass direction of a line connecting your starting point to
your final position? (If you represent the two legs of the walk
as vector displacements A and B, as in Figure 3.56, then

this problem finds theirsum R=A + B )

N
A+B=R 7}
W E
40°
B A S
B=20m /, _
A=12m 1 20°
I -
X
R

Figure 3.56

6. Repeat the problem above, but reverse the order of the two
legs of the walk; show that you get the same final result. That
is, you first walk leg B, which is 20.0 m in a direction exactly
40° south of west, and then leg A , whichis 12.0 min a

direction exactly 20° west of north. (This problem shows that

A+B=B+A)

7. (a) Repeat the problem two problems prior, but for the
second leg you walk 20.0 m in a direction 40.0° north of
east (which is equivalent to subtracting B from A —that is,
to finding R’ = A — B). (b) Repeat the problem two
problems prior, but now you first walk 20.0 m in a direction
40.0° south of west and then 12.0 m in a direction 20.0°
east of south (which is equivalent to subtracting A from B
—that is, to finding R”” = B - A = -R’). Show that this is
the case.

8. Show that the order of addition of three vectors does not
affect their sum. Show this property by choosing any three
vectors A, B, and C, all having different lengths and
directions. Find the sum A + B + C then find their sum

when added in a different order and show the result is the
same. (There are five other orders in which A, B, and C
can be added; choose only one.)

9. Show that the sum of the vectors discussed in Example
3.2 gives the result shown in Figure 3.24.
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10. Find the magnitudes of velocities v, and vg in Figure
3.57

Vit = Vo + Vg
Vi
Vit = 6.72 m/s
Vs
Vit /2309
26.5°
Va
22.5° .
X

Figure 3.57 The two velocities V5 and Vg add to give atotal Vi .

11. Find the components of vy along the x- and y-axes in
Figure 3.57.
12. Find the components of v, along a set of perpendicular

axes rotated 30° counterclockwise relative to those in
Figure 3.57.

3.3 Vector Addition and Subtraction: Analytical
Methods

13. Find the following for path C in Figure 3.58: (a) the total
distance traveled and (b) the magnitude and direction of the
displacement from start to finish. In this part of the problem,
explicitly show how you follow the steps of the analytical
method of vector addition.

N i
' ' a -y
|—>---— e —
A C —
I
s A = 3
[ ]
Start —B
m
R N

Figure 3.58 The various lines represent paths taken by different people
walking in a city. All blocks are 120 m on a side.

14. Find the following for path D in Figure 3.58: (a) the total
distance traveled and (b) the magnitude and direction of the
displacement from start to finish. In this part of the problem,
explicitly show how you follow the steps of the analytical
method of vector addition.
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15. Find the north and east components of the displacement
from San Francisco to Sacramento shown in Figure 3.59.

i \ — I

—~7| ® salinas
. Ny
(7 Monlmy\\

Figure 3.59

16. Solve the following problem using analytical techniques:
Suppose you walk 18.0 m straight west and then 25.0 m
straight north. How far are you from your starting point, and
what is the compass direction of a line connecting your
starting point to your final position? (If you represent the two
legs of the walk as vector displacements A and B, asin
Figure 3.60, then this problem asks you to find their sum
R=A+B)

Y
A+B=R

— -
-

A X

Figure 3.60 The two displacements A and B addto give a total

displacement R having magnitude R and direction 0.

Note that you can also solve this graphically. Discuss why the
analytical technique for solving this problem is potentially
more accurate than the graphical technique.

17. Repeat Exercise 3.16 using analytical techniques, but
reverse the order of the two legs of the walk and show that
you get the same final result. (This problem shows that
adding them in reverse order gives the same result—that is,
B + A = A + B ) Discuss how taking another path to

reach the same point might help to overcome an obstacle
blocking you other path.
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18. You drive 7.50 km in a straight line in a direction 15°

east of north. (a) Find the distances you would have to drive
straight east and then straight north to arrive at the same
point. (This determination is equivalent to find the
components of the displacement along the east and north
directions.) (b) Show that you still arrive at the same point if
the east and north legs are reversed in order.

19. Do Exercise 3.16 again using analytical techniques and
change the second leg of the walk to 25.0 m straight south.
(This is equivalent to subtracting B from A —that is, finding
R’ = A - B) (b) Repeat again, but now you first walk

25.0 m north and then 18.0 m east. (This is equivalent to
subtract A from B —thatis, to find A = B + C. Is that
consistent with your result?)

20. A new landowner has a triangular piece of flat land she
wishes to fence. Starting at the west corner, she measures
the first side to be 80.0 m long and the next to be 105 m.
These sides are represented as displacement vectors A
from B in Figure 3.61. She then correctly calculates the
length and orientation of the third side C . What is her
result?

A+B+C=0
| R

0=2

C=7m
B=105m
c B\11c N
- : - W T E
A 21 E X \
A=80m : S
Figure 3.61

21. You fly 32.0 km in a straight line in still air in the
direction 35.0° south of west. (a) Find the distances you

would have to fly straight south and then straight west to
arrive at the same point. (This determination is equivalent to
finding the components of the displacement along the south
and west directions.) (b) Find the distances you would have to
fly first in a direction 45.0° south of west and then in a

direction 45.0° west of north. These are the components of

the displacement along a different set of axes—one rotated
45°.

137

22. A farmer wants to fence off his four-sided plot of flat land.
He measures the first three sides, shownas A, B, and C

in Figure 3.62, and then correctly calculates the length and
orientation of the fourth side D . What is his result?

Y4A+B+C+D=0 N

Figure 3.62

23. In an attempt to escape his island, Gilligan builds a raft
and sets to sea. The wind shifts a great deal during the day,
and he is blown along the following straight lines: 2.50 km

45.0° north of west; then 4.70 km 60.0° south of east;
then 1.30 km 25.0° south of west; then 5.10 km straight
east; then 1.70 km 5.00° east of north; then 7.20 km
55.0° south of west; and finally 2.80 km 10.0° north of
east. What is his final position relative to the island?

24. Suppose a pilot flies 40.0 km in a direction 60° north of
east and then flies 30.0 km in a direction 15° north of east
as shown in Figure 3.63. Find her total distance R from the
starting point and the direction @ of the straight-line path to

the final position. Discuss qualitatively how this flight would be
altered by a wind from the north and how the effect of the
wind would depend on both wind speed and the speed of the
plane relative to the air mass.

0 = 15°
y B=30km B | A+B=R

""" N

A = 40 km A

A R W E

=1 s

B, = 60°
X
Figure 3.63

3.4 Projectile Motion
25. A projectile is launched at ground level with an initial
speed of 50.0 m/s at an angle of 30.0° above the horizontal.

It strikes a target above the ground 3.00 seconds later. What
are the x and y distances from where the projectile was

launched to where it lands?
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26. A ball is kicked with an initial velocity of 16 m/s in the
horizontal direction and 12 m/s in the vertical direction. (a) At
what speed does the ball hit the ground? (b) For how long
does the ball remain in the air? (c)What maximum height is
attained by the ball?

27. A ball is thrown horizontally from the top of a 60.0-m
building and lands 100.0 m from the base of the building.
Ignore air resistance. (a) How long is the ball in the air? (b)
What must have been the initial horizontal component of the
velocity? (c) What is the vertical component of the velocity
just before the ball hits the ground? (d) What is the velocity
(including both the horizontal and vertical components) of the
ball just before it hits the ground?

28. (a) A daredevil is attempting to jump his motorcycle over a
line of buses parked end to end by driving up a 32° ramp at

a speed of 40.0 m/s (144 km/h) . How many buses can he

clear if the top of the takeoff ramp is at the same height as the
bus tops and the buses are 20.0 m long? (b) Discuss what
your answer implies about the margin of error in this act—that
is, consider how much greater the range is than the horizontal
distance he must travel to miss the end of the last bus.
(Neglect air resistance.)

29. An archer shoots an arrow at a 75.0 m distant target; the
bull's-eye of the target is at same height as the release height
of the arrow. (a) At what angle must the arrow be released to
hit the bull's-eye if its initial speed is 35.0 m/s? In this part of
the problem, explicitly show how you follow the steps involved
in solving projectile motion problems. (b) There is a large tree
halfway between the archer and the target with an
overhanging horizontal branch 3.50 m above the release
height of the arrow. Will the arrow go over or under the
branch?

30. A rugby player passes the ball 7.00 m across the field,
where it is caught at the same height as it left his hand. (a) At
what angle was the ball thrown if its initial speed was 12.0 m/
s, assuming that the smaller of the two possible angles was
used? (b) What other angle gives the same range, and why
would it not be used? (c) How long did this pass take?

31. Verify the ranges for the projectiles in Figure 3.41(a) for
6 = 45° and the given initial velocities.

32. Verify the ranges shown for the projectiles in Figure
3.41(b) for an initial velocity of 50 m/s at the given initial
angles.

33. The cannon on a battleship can fire a shell a maximum
distance of 32.0 km. (a) Calculate the initial velocity of the
shell. (b) What maximum height does it reach? (At its highest,
the shell is above 60% of the atmosphere—but air resistance
is not really negligible as assumed to make this problem
easier.) (c) The ocean is not flat, because the Earth is curved.
Assume that the radius of the Earth is 6.37x10> km . How
many meters lower will its surface be 32.0 km from the ship
along a horizontal line parallel to the surface at the ship?
Does your answer imply that error introduced by the

assumption of a flat Earth in projectile motion is significant
here?

34. An arrow is shot from a height of 1.5 m toward a cliff of
height H . It is shot with a velocity of 30 m/s at an angle of
60° above the horizontal. It lands on the top edge of the cliff

4.0 s later. (a) What is the height of the cliff? (b) What is the
maximum height reached by the arrow along its trajectory? (c)
What is the arrow's impact speed just before hitting the cliff?
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35. In the standing broad jump, one squats and then pushes
off with the legs to see how far one can jump. Suppose the

extension of the legs from the crouch position is 0.600 m and
the acceleration achieved from this position is 1.25 times the
acceleration due to gravity, g . How far can they jump? State

your assumptions. (Increased range can be achieved by
swinging the arms in the direction of the jump.)

36. The world long jump record is 8.95 m (Mike Powell, USA,
1991). Treated as a projectile, what is the maximum range
obtainable by a person if he has a take-off speed of 9.5 m/s?
State your assumptions.

37. Serving at a speed of 170 km/h, a tennis player hits the
ball at a height of 2.5 m and an angle € below the horizontal.
The baseline from which the ball is served is 11.9 m from the
net, which is 0.91 m high. What is the angle @ such that the

ball just crosses the net? Will the ball land in the service box,
which has an outermost service line is 6.40 m from the net?

38. A football quarterback is moving straight backward at a
speed of 2.00 m/s when he throws a pass to a player 18.0 m
straight downfield. (a) If the ball is thrown at an angle of 25°

relative to the ground and is caught at the same height as it is
released, what is its initial speed relative to the ground? (b)
How long does it take to get to the receiver? (c) What is its
maximum height above its point of release?

39. Gun sights are adjusted to aim high to compensate for the
effect of gravity, effectively making the gun accurate only for a
specific range. (a) If a gun is sighted to hit targets that are at
the same height as the gun and 100.0 m away, how low will
the bullet hit if aimed directly at a target 150.0 m away? The
muzzle velocity of the bullet is 275 m/s. (b) Discuss
qualitatively how a larger muzzle velocity would affect this
problem and what would be the effect of air resistance.

40. An eagle is flying horizontally at a speed of 3.00 m/s when
the fish in her talons wiggles loose and falls into the lake 5.00
m below. Calculate the velocity of the fish relative to the water
when it hits the water.

41. An owl is carrying a mouse to the chicks in its nest. Its
position at that time is 4.00 m west and 12.0 m above the
center of the 30.0 cm diameter nest. The owl is flying east at
3.50 m/s at an angle 30.0° below the horizontal when it

accidentally drops the mouse. Is the owl lucky enough to
have the mouse hit the nest? To answer this question,
calculate the horizontal position of the mouse when it has
fallen 12.0 m.

42. Suppose a soccer player kicks the ball from a distance 30
m toward the goal. Find the initial speed of the ball if it just
passes over the goal, 2.4 m above the ground, given the
initial direction to be 40° above the horizontal.

43. Can a goalkeeper at her/ his goal kick a soccer ball into
the opponent's goal without the ball touching the ground? The
distance will be about 95 m. A goalkeeper can give the ball a
speed of 30 m/s.

44. The free throw line in basketball is 4.57 m (15 ft) from the
basket, which is 3.05 m (10 ft) above the floor. A player
standing on the free throw line throws the ball with an initial
speed of 8.15 m/s, releasing it at a height of 2.44 m (8 ft)
above the floor. At what angle above the horizontal must the
ball be thrown to exactly hit the basket? Note that most
players will use a large initial angle rather than a flat shot
because it allows for a larger margin of error. Explicitly show
how you follow the steps involved in solving projectile motion
problems.
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45. In 2007, Michael Carter (U.S.) set a world record in the
shot put with a throw of 24.77 m. What was the initial speed
of the shot if he released it at a height of 2.10 m and threw it
at an angle of 38.0° above the horizontal? (Although the
maximum distance for a projectile on level ground is achieved
at 45° when air resistance is neglected, the actual angle to
achieve maximum range is smaller; thus, 38° will give a

longer range than 45° in the shot put.)

46. A basketball player is running at 5.00 m/s directly
toward the basket when he jumps into the air to dunk the ball.
He maintains his horizontal velocity. (a) What vertical velocity
does he need to rise 0.750 m above the floor? (b) How far
from the basket (measured in the horizontal direction) must
he start his jump to reach his maximum height at the same
time as he reaches the basket?

47. A football player punts the ball at a 45.0° angle. Without

an effect from the wind, the ball would travel 60.0 m
horizontally. (a) What is the initial speed of the ball? (b) When
the ball is near its maximum height it experiences a brief gust
of wind that reduces its horizontal velocity by 1.50 m/s. What
distance does the ball travel horizontally?

48. Prove that the trajectory of a projectile is parabolic, having
the form y = ax + bx? . To obtain this expression, solve the
equation x = v, ¢ for ¢ and substitute it into the expression

for y =g, — (1 /2)gt2 (These equations describe the x
and y positions of a projectile that starts at the origin.) You
should obtain an equation of the form y = ax + bx?* where

a and b are constants.

v sin 20,
8
level ground by finding the time ¢ at which y becomes zero

49. Derive R = for the range of a projectile on

and substituting this value of ¢ into the expression for
X — X, noting that R = x — x

50. Unreasonable Results (a) Find the maximum range of a
super cannon that has a muzzle velocity of 4.0 km/s. (b) What
is unreasonable about the range you found? (c) Is the
premise unreasonable or is the available equation
inapplicable? Explain your answer. (d) If such a muzzle
velocity could be obtained, discuss the effects of air
resistance, thinning air with altitude, and the curvature of the
Earth on the range of the super cannon.

51. Construct Your Own Problem Consider a ball tossed
over a fence. Construct a problem in which you calculate the
ball's needed initial velocity to just clear the fence. Among the
things to determine are; the height of the fence, the distance
to the fence from the point of release of the ball, and the
height at which the ball is released. You should also consider
whether it is possible to choose the initial speed for the ball
and just calculate the angle at which it is thrown. Also
examine the possibility of multiple solutions given the
distances and heights you have chosen.
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3.5 Addition of Velocities

52. Bryan Allen pedaled a human-powered aircraft across the
English Channel from the cliffs of Dover to Cap Gris-Nez on
June 12, 1979. (a) He flew for 169 min at an average velocity
of 3.53 m/s in a direction 45° south of east. What was his

total displacement? (b) Allen encountered a headwind
averaging 2.00 m/s almost precisely in the opposite direction
of his motion relative to the Earth. What was his average
velocity relative to the air? (c) What was his total
displacement relative to the air mass?

53. A seagull flies at a velocity of 9.00 m/s straight into the
wind. (a) If it takes the bird 20.0 min to travel 6.00 km relative
to the Earth, what is the velocity of the wind? (b) If the bird
turns around and flies with the wind, how long will he take to
return 6.00 km? (c) Discuss how the wind affects the total
round-trip time compared to what it would be with no wind.

54. Near the end of a marathon race, the first two runners are
separated by a distance of 45.0 m. The front runner has a
velocity of 3.50 m/s, and the second a velocity of 4.20 m/s. (a)
What is the velocity of the second runner relative to the first?
(b) If the front runner is 250 m from the finish line, who will
win the race, assuming they run at constant velocity? (c)
What distance ahead will the winner be when she crosses the
finish line?

55. Verify that the coin dropped by the airline passenger in

the Example 3.8 travels 144 m horizontally while falling 1.50
m in the frame of reference of the Earth.

56. A football quarterback is moving straight backward at a
speed of 2.00 m/s when he throws a pass to a player 18.0 m
straight downfield. The ball is thrown at an angle of 25.0°
relative to the ground and is caught at the same height as it is

released. What is the initial velocity of the ball relative to the
quarterback ?

57. A ship sets sail from Rotterdam, The Netherlands,
heading due north at 7.00 m/s relative to the water. The local
ocean current is 1.50 m/s in a direction 40.0° north of east.
What is the velocity of the ship relative to the Earth?

58. (a) A jet airplane flying from Darwin, Australia, has an air
speed of 260 m/s in a direction 5.0° south of west. It is in the

jet stream, which is blowing at 35.0 m/s in a direction 15°

south of east. What is the velocity of the airplane relative to
the Earth? (b) Discuss whether your answers are consistent
with your expectations for the effect of the wind on the plane's
path.

59. (a) In what direction would the ship in Exercise 3.57 have
to travel in order to have a velocity straight north relative to
the Earth, assuming its speed relative to the water remains
7.00 m/s ? (b) What would its speed be relative to the Earth?

60. (a) Another airplane is flying in a jet stream that is blowing
at 45.0 m/s in a direction 20° south of east (as in Exercise
3.58). Its direction of motion relative to the Earth is 45.0°
south of west, while its direction of travel relative to the air is
5.00° south of west. What is the airplane's speed relative to

the air mass? (b) What is the airplane's speed relative to the
Earth?
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61. A sandal is dropped from the top of a 15.0-m-high mast
on a ship moving at 1.75 m/s due south. Calculate the
velocity of the sandal when it hits the deck of the ship: (a)
relative to the ship and (b) relative to a stationary observer on
shore. (c) Discuss how the answers give a consistent result
for the position at which the sandal hits the deck.

62. The velocity of the wind relative to the water is crucial to
sailboats. Suppose a sailboat is in an ocean current that has
a velocity of 2.20 m/s in a direction 30.0° east of north
relative to the Earth. It encounters a wind that has a velocity
of 4.50 m/s in a direction of 50.0° south of west relative to

the Earth. What is the velocity of the wind relative to the
water?

63. The great astronomer Edwin Hubble discovered that all
distant galaxies are receding from our Milky Way Galaxy with
velocities proportional to their distances. It appears to an
observer on the Earth that we are at the center of an
expanding universe. Figure 3.64 illustrates this for five
galaxies lying along a straight line, with the Milky Way Galaxy
at the center. Using the data from the figure, calculate the
velocities: (a) relative to galaxy 2 and (b) relative to galaxy 5.
The results mean that observers on all galaxies will see
themselves at the center of the expanding universe, and they
would likely be aware of relative velocities, concluding that it
is not possible to locate the center of expansion with the
given information.

Galaxy 1 Galaxy 2 Galaxy 3 Galaxy 4 Galaxy 5
300 My 150 Mly MW 190 Mly 450 Mly
v, =-4500 km/s v, =-2200 km/s v,=2830 km/s v, =6700 km/s

Figure 3.64 Five galaxies on a straight line, showing their distances and
velocities relative to the Milky Way (MW) Galaxy. The distances are in
millions of light years (Mly), where a light year is the distance light
travels in one year. The velocities are nearly proportional to the
distances. The sizes of the galaxies are greatly exaggerated; an
average galaxy is about 0.1 Mly across.

64. (a) Use the distance and velocity data in Figure 3.64 to
find the rate of expansion as a function of distance.

(b) If you extrapolate back in time, how long ago would all of

the galaxies have been at approximately the same position?

The two parts of this problem give you some idea of how the

Hubble constant for universal expansion and the time back to
the Big Bang are determined, respectively.

65. An athlete crosses a 25-m-wide river by swimming
perpendicular to the water current at a speed of 0.5 m/s
relative to the water. He reaches the opposite side at a
distance 40 m downstream from his starting point. How fast is
the water in the river flowing with respect to the ground? What
is the speed of the swimmer with respect to a friend at rest on
the ground?

66. A ship sailing in the Gulf Stream is heading 25.0° west
of north at a speed of 4.00 m/s relative to the water. lts
velocity relative to the Earth is 4.80 m/s 5.00° west of

north. What is the velocity of the Gulf Stream? (The velocity
obtained is typical for the Gulf Stream a few hundred
kilometers off the east coast of the United States.)

Test Prep for AP® Courses

3.1 Kinematics in Two Dimensions: An
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67. An ice hockey player is moving at 8.00 m/s when he hits
the puck toward the goal. The speed of the puck relative to
the player is 29.0 m/s. The line between the center of the goal
and the player makes a 90.0° angle relative to his path as
shown in Figure 3.65. What angle must the puck's velocity
make relative to the player (in his frame of reference) to hit
the center of the goal?

Goal

vtm:?

Vioiayer T VYouek = Viat

Figure 3.65 An ice hockey player moving across the rink must shoot
backward to give the puck a velocity toward the goal.

68. Unreasonable Results Suppose you wish to shoot
supplies straight up to astronauts in an orbit 36,000 km above
the surface of the Earth. (a) At what velocity must the
supplies be launched? (b) What is unreasonable about this
velocity? (c) Is there a problem with the relative velocity
between the supplies and the astronauts when the supplies
reach their maximum height? (d) Is the premise unreasonable
or is the available equation inapplicable? Explain your
answer.

69. Unreasonable Results A commercial airplane has an air
speed of 280 m/s due east and flies with a strong tailwind. It

travels 3000 km in a direction 5° south of east in 1.50 h. (a)

What was the velocity of the plane relative to the ground? (b)
Calculate the magnitude and direction of the tailwind's
velocity. (c) What is unreasonable about both of these
velocities? (d) Which premise is unreasonable?

70. Construct Your Own Problem Consider an airplane
headed for a runway in a cross wind. Construct a problem in
which you calculate the angle the airplane must fly relative to
the air mass in order to have a velocity parallel to the runway.
Among the things to consider are the direction of the runway,
the wind speed and direction (its velocity) and the speed of
the plane relative to the air mass. Also calculate the speed of
the airplane relative to the ground. Discuss any last minute
maneuvers the pilot might have to perform in order for the
plane to land with its wheels pointing straight down the
runway.

Introduction

1. A ball is thrown at an angle of 45 degrees above the
horizontal. Which of the following best describes the
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acceleration of the ball from the instant after it leaves the
thrower's hand until the time it hits the ground?

a. Always in the same direction as the motion, initially
positive and gradually dropping to zero by the time it hits
the ground

b. Initially positive in the upward direction, then zero at
maximum height, then negative from there until it hits
the ground

c. Always in the opposite direction as the motion, initially
positive and gradually dropping to zero by the time it hits
the ground

d. Always in the downward direction with the same
constant value

2. In an experiment, a student launches a ball with an initial
horizontal velocity at an elevation 2 meters above ground.
The ball follows a parabolic trajectory until it hits the ground.
Which of the following accurately describes the graph of the
ball's vertical acceleration versus time (taking the downward
direction to be negative)?

a. A negative value that does not change with time

b. A gradually increasing negative value (straight line)

c. Anincreasing rate of negative values over time

(parabolic curve)
d. Zero at all times since the initial motion is horizontal

3. A student wishes to design an experiment to show that the
acceleration of an object is independent of the object's
velocity. To do this, ball A is launched horizontally with some
initial speed at an elevation 1.5 meters above the ground, ball
B is dropped from rest 1.5 meters above the ground, and ball
C is launched vertically with some initial speed at an elevation
1.5 meters above the ground. What information would the
student need to collect about each ball in order to test the
hypothesis?

3.2 Vector Addition and Subtraction: Graphical
Methods
4. A ball is launched vertically upward. The vertical position of

the ball is recorded at various points in time in the table
shown.

Table 3.1
0.490 0.1
0.882 0.2
1.176 0.3
1.372 0.4
1.470 0.5
1.470 0.6
1.372 0.7

Which of the following correctly describes the graph of the
ball's vertical velocity versus time?

a. Always positive, steadily decreasing

b. Always positive, constant

c. Initially positive, steadily decreasing, becoming negative
at the end

d. Initially zero, steadily getting more and more negative
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Table 3.2
0.490 0.1
0.882 0.2
1.176 0.3
1.372 0.4
1.470 0.5
1.470 0.6
1.372 0.7

A ball is launched at an angle of 60 degrees above the
horizontal, and the vertical position of the ball is recorded at
various points in time in the table shown, assuming the ball
was at a height of 0 at time t = 0.

a. Draw a graph of the ball's vertical velocity versus time.

b. Describe the graph of the ball's horizontal velocity.

c. Draw a graph of the ball's vertical acceleration versus

time.

3.4 Projectile Motion

6. In an experiment, a student launches a ball with an initial
horizontal velocity of 5.00 meters/sec at an elevation 2.00
meters above ground. Draw and clearly label with appropriate
values and units a graph of the ball's horizontal velocity vs.
time and the ball's vertical velocity vs. time. The graph should
cover the motion from the instant after the ball is launched
until the instant before it hits the ground. Assume the
downward direction is negative for this problem.
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DYNAMICS: FORCE AND NEWTON'S
LAWS OF MOTION
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Figure 4.1 Newton’s laws of motion describe the motion of the dolphin’s path. (credit: Jin Jang)
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Connection for AP® Courses

Motion draws our attention. Motion itself can be beautiful, causing us to marvel at the forces needed to achieve spectacular
motion, such as that of a jumping dolphin, a leaping pole vaulter, a bird in flight, or an orbiting satellite. The study of motion is
kinematics, but kinematics only describes the way objects move—their velocity and their acceleration. Dynamics considers the
forces that affect the motion of moving objects and systems. Newton'’s laws of motion are the foundation of dynamics. These
laws provide an example of the breadth and simplicity of principles under which nature functions. They are also universal laws in
that they apply to situations on Earth as well as in space.

Isaac Newton’s (1642—-1727) laws of motion were just one part of the monumental work that has made him legendary. The
development of Newton’s laws marks the transition from the Renaissance into the modern era. This transition was characterized
by a revolutionary change in the way people thought about the physical universe. For many centuries natural philosophers had
debated the nature of the universe based largely on certain rules of logic, with great weight given to the thoughts of earlier



144 Chapter 4 | Dynamics: Force and Newton's Laws of Motion

classical philosophers such as Aristotle (384-322 BC). Among the many great thinkers who contributed to this change were
Newton and Galileo Galilei (1564-1647).

PHILOSOPHIA
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Figure 4.2 Isaac Newton’s monumental work, Philosophiae Naturalis Principia Mathematica, was published in 1687. It proposed scientific laws that are
still used today to describe the motion of objects. (credit: Service commun de la documentation de I'Université de Strasbourg)

Galileo was instrumental in establishing observation as the absolute determinant of truth, rather than “logical” argument. Galileo’s
use of the telescope was his most notable achievement in demonstrating the importance of observation. He discovered moons
orbiting Jupiter and made other observations that were inconsistent with certain ancient ideas and religious dogma. For this
reason, and because of the manner in which he dealt with those in authority, Galileo was tried by the Inquisition and punished.
He spent the final years of his life under a form of house arrest. Because others before Galileo had also made discoveries by
observing the nature of the universe and because repeated observations verified those of Galileo, his work could not be
suppressed or denied. After his death, his work was verified by others, and his ideas were eventually accepted by the church and
scientific communities.

Galileo also contributed to the formulation of what is now called Newton’s first law of motion. Newton made use of the work of his
predecessors, which enabled him to develop laws of motion, discover the law of gravity, invent calculus, and make great
contributions to the theories of light and color. It is amazing that many of these developments were made by Newton working
alone, without the benefit of the usual interactions that take place among scientists today.

Newton'’s laws are introduced along with Big Idea 3, that interactions can be described by forces. These laws provide a
theoretical basis for studying motion depending on interactions between the objects. In particular, Newton's laws are applicable
to all forces in inertial frames of references (Enduring Understanding 3.A). We will find that all forces are vectors; that is, forces
always have both a magnitude and a direction (Essential Knowledge 3.A.2). Furthermore, we will learn that all forces are a result
of interactions between two or more objects (Essential Knowledge 3.A.3). These interactions between any two objects are
described by Newton's third law, stating that the forces exerted on these objects are equal in magnitude and opposite in direction
to each other (Essential Knowledge 3.A.4).

We will discover that there is an empirical cause-effect relationship between the net force exerted on an object of mass m and its
acceleration, with this relationship described by Newton's second law (Enduring Understanding 3.B). This supports Big Idea 1,
that inertial mass is a property of an object or a system. The mass of an object or a system is one of the factors affecting
changes in motion when an object or a system interacts with other objects or systems (Essential Knowledge 1.C.1). Another is
the net force on an object, which is the vector sum of all the forces exerted on the object (Essential Knowledge 3.B.1). To
analyze this, we use free-body diagrams to visualize the forces exerted on a given object in order to find the net force and
analyze the object's motion (Essential Knowledge 3.B.2).

Thinking of these objects as systems is a concept introduced in this chapter, where a system is a collection of elements that
could be considered as a single object without any internal structure (Essential Knowledge 5.A.1). This will support Big Idea 5,
that changes that occur to the system due to interactions are governed by conservation laws. These conservation laws will be
the focus of later chapters in this book. They explain whether quantities are conserved in the given system or change due to
transfer to or from another system due to interactions between the systems (Enduring Understanding 5.A).

Furthermore, when a situation involves more than one object, it is important to define the system and analyze the motion of a
whole system, not its elements, based on analysis of external forces on the system. This supports Big Idea 4, that interactions
between systems cause changes in those systems. All kinematics variables in this case describe the motion of the center of
mass of the system (Essential Knowledge 4.A.1, Essential Knowledge 4.A.2). The internal forces between the elements of the
system do not affect the velocity of the center of mass (Essential Knowledge 4.A.3). The velocity of the center of mass will
change only if there is a net external force exerted on the system (Enduring Understanding 4.A).

We will learn that some of these interactions can be explained by the existence of fields extending through space, supporting Big
Idea 2. For example, any object that has mass creates a gravitational field in space (Enduring Understanding 2.B). Any material
object (one that has mass) placed in the gravitational field will experience gravitational force (Essential Knowledge 2.B.1).
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Forces may be categorized as contact or long-distance (Enduring Understanding 3.C). In this chapter we will work with both. An
example of a long-distance force is gravitation (Essential Knowledge 3.C.1). Contact forces, such as tension, friction, normal
force, and the force of a spring, result from interatomic electric forces at the microscopic level (Essential Knowledge 3.C.4).

It was not until the advent of modern physics early in the twentieth century that it was discovered that Newton’s laws of motion
produce a good approximation to motion only when the objects are moving at speeds much, much less than the speed of light

and when those objects are larger than the size of most molecules (about 102 min diameter). These constraints define the
realm of classical mechanics, as discussed in Introduction to the Nature of Science and Physics. At the beginning of the
twentieth century, Albert Einstein (1879-1955) developed the theory of relativity and, along with many other scientists, quantum
theory. Quantum theory does not have the constraints present in classical physics. All of the situations we consider in this
chapter, and all those preceding the introduction of relativity in Special Relativity, are in the realm of classical physics.

The development of special relativity and empirical observations at atomic scales led to the idea that there are four basic forces
that account for all known phenomena. These forces are called fundamental (Enduring Understanding 3.G). The properties of
gravitational (Essential Knowledge 3.G.1) and electromagnetic (Essential Knowledge 3.G.2) forces are explained in more detail.

Big Idea 1 Objects and systems have properties such as mass and charge. Systems may have internal structure.

Essential Knowledge 1.C.1 Inertial mass is the property of an object or a system that determines how its motion changes when it
interacts with other objects or systems.

Big Idea 2 Fields existing in space can be used to explain interactions.

Enduring Understanding 2.A A field associates a value of some physical quantity with every point in space. Field models are
useful for describing interactions that occur at a distance (long-range forces) as well as a variety of other physical phenomena.

Essential Knowledge 2.A.1 A vector field gives, as a function of position (and perhaps time), the value of a physical quantity that
is described by a vector.

Essential Knowledge 2.A.2 A scalar field gives the value of a physical quantity.
Enduring Understanding 2.B A gravitational field is caused by an object with mass.

Essential Knowledge 2.B.1 A gravitational field g at the location of an object with mass m causes a gravitational force of
magnitude mg to be exerted on the object in the direction of the field.

Big Idea 3 The interactions of an object with other objects can be described by forces.

Enduring Understanding 3.A All forces share certain common characteristics when considered by observers in inertial reference
frames.

Essential Knowledge 3.A.2 Forces are described by vectors.
Essential Knowledge 3.A.3 A force exerted on an object is always due to the interaction of that object with another object.

Essential Knowledge 3.A.4 If one object exerts a force on a second object, the second object always exerts a force of equal
magnitude on the first object in the opposite direction.

Enduring Understanding 3.B Classically, the acceleration of an object interacting with other objects can be predicted by using
a= z F/ m.

Essential Knowledge 3.B.1 If an object of interest interacts with several other objects, the net force is the vector sum of the
individual forces.

Essential Knowledge 3.B.2 Free-body diagrams are useful tools for visualizing the forces being exerted on a single object and
writing the equations that represent a physical situation.

Enduring Understanding 3.C At the macroscopic level, forces can be categorized as either long-range (action-at-a-distance)
forces or contact forces.

Essential Knowledge 3.C.1 Gravitational force describes the interaction of one object that has mass with another object that has
mass.

Essential Knowledge 3.C.4 Contact forces result from the interaction of one object touching another object, and they arise from
interatomic electric forces. These forces include tension, friction, normal, spring (Physics 1), and buoyant (Physics 2).

Enduring Understanding 3.G Certain types of forces are considered fundamental.

Essential Knowledge 3.G.1 Gravitational forces are exerted at all scales and dominate at the largest distance and mass scales.
Essential Knowledge 3.G.2 Electromagnetic forces are exerted at all scales and can dominate at the human scale.

Big Idea 4 Interactions between systems can result in changes in those systems.

Enduring Understanding 4.A The acceleration of the center of mass of a system is related to the net force exerted on the system,
where a = ZF/ m.

Essential Knowledge 4.A.1 The linear motion of a system can be described by the displacement, velocity, and acceleration of its
center of mass.

Essential Knowledge 4.A.2 The acceleration is equal to the rate of change of velocity with time, and velocity is equal to the rate
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of change of position with time.

Essential Knowledge 4.A.3 Forces that systems exert on each other are due to interactions between objects in the systems. If
the interacting objects are parts of the same system, there will be no change in the center-of-mass velocity of that system.
Big Idea 5 Changes that occur as a result of interactions are constrained by conservation laws.

Enduring Understanding 5.A Certain quantities are conserved, in the sense that the changes of those quantities in a given
system are always equal to the transfer of that quantity to or from the system by all possible interactions with other systems.

Essential Knowledge 5.A.1 A system is an object or a collection of objects. The objects are treated as having no internal
structure.

4.1 Development of Force Concept

Learning Objectives

By the end of this section, you will be able to:
* Understand the definition of force.
The information presented in this section supports the following AP® learning objectives and science practices:

« 3.A.2.1 The student is able to represent forces in diagrams or mathematically using appropriately labeled vectors with
magnitude, direction, and units during the analysis of a situation. (S.P. 1.1)

» 3.A.3.2 The student is able to challenge a claim that an object can exert a force on itself. (S.P. 6.1)

« 3.A.3.3 The student is able to describe a force as an interaction between two objects and identify both objects for any
force. (S.P. 1.4)

« 3.B.2.1 The student is able to create and use free-body diagrams to analyze physical situations to solve problems with
motion qualitatively and quantitatively. (S.P. 1.1, 1.4, 2.2)

Dynamics is the study of the forces that cause objects and systems to move. To understand this, we need a working definition of
force. Our intuitive definition of force—that is, a push or a pull—is a good place to start. We know that a push or pull has both
magnitude and direction (therefore, it is a vector quantity) and can vary considerably in each regard. For example, a cannon
exerts a strong force on a cannonball that is launched into the air. In contrast, Earth exerts only a tiny downward pull on a flea.
Our everyday experiences also give us a good idea of how multiple forces add. If two people push in different directions on a
third person, as illustrated in Figure 4.3, we might expect the total force to be in the direction shown. Since force is a vector, it
adds just like other vectors, as illustrated in Figure 4.3(a) for two ice skaters. Forces, like other vectors, are represented by
arrows and can be added using the familiar head-to-tail method or by trigonometric methods. These ideas were developed in
Two-Dimensional Kinematics.

By definition, force is always the result of an interaction of two or more objects. No object possesses force on its own. For
example, a cannon does not possess force, but it can exert force on a cannonball. Earth does not possess force on its own, but
exerts force on a football or on any other massive object. The skaters in Figure 4.3 exert force on one another as they interact.

No object can exert force on itself. When you clap your hands, one hand exerts force on the other. When a train accelerates, it
exerts force on the track and vice versa. A bowling ball is accelerated by the hand throwing it; once the hand is no longer in
contact with the bowling ball, it is no longer accelerating the bowling ball or exerting force on it. The ball continues moving
forward due to inertia.

%,
h

Free-body diagram
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Figure 4.3 Part (a) shows an overhead view of two ice skaters pushing on a third. Forces are vectors and add like other vectors, so the total force on
the third skater is in the direction shown. In part (b), we see a free-body diagram representing the forces acting on the third skater.

Figure 4.3(b) is our first example of a free-body diagram, which is a technique used to illustrate all the external forces acting
on a body. The body is represented by a single isolated point (or free body), and only those forces acting on the body from the
outside (external forces) are shown. (These forces are the only ones shown, because only external forces acting on the body
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affect its motion. We can ignore any internal forces within the body.) Free-body diagrams are very useful in analyzing forces
acting on a system and are employed extensively in the study and application of Newton’s laws of motion.

A more quantitative definition of force can be based on some standard force, just as distance is measured in units relative to a
standard distance. One possibility is to stretch a spring a certain fixed distance, as illustrated in Figure 4.4, and use the force it
exerts to pull itself back to its relaxed shape—called a restoring force—as a standard. The magnitude of all other forces can be
stated as multiples of this standard unit of force. Many other possibilities exist for standard forces. (One that we will encounter in
Magnetism is the magnetic force between two wires carrying electric current.) Some alternative definitions of force will be given

later in this chapter.
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Figure 4.4 The force exerted by a stretched spring can be used as a standard unit of force. (a) This spring has a length X when undistorted. (b) When

stretched a distance AX , the spring exerts a restoring force, Frestore , which is reproducible. (c) A spring scale is one device that uses a spring to

measure force. The force F ogiore is exerted on whatever is attached to the hook. Here F' jogiore has a magnitude of 6 units in the force standard

being employed.

Take-Home Experiment: Force Standards

To investigate force standards and cause and effect, get two identical rubber bands. Hang one rubber band vertically on a
hook. Find a small household item that could be attached to the rubber band using a paper clip, and use this item as a
weight to investigate the stretch of the rubber band. Measure the amount of stretch produced in the rubber band with one,
two, and four of these (identical) items suspended from the rubber band. What is the relationship between the number of
items and the amount of stretch? How large a stretch would you expect for the same number of items suspended from two
rubber bands? What happens to the amount of stretch of the rubber band (with the weights attached) if the weights are also
pushed to the side with a pencil?

4.2 Newton's First Law of Motion: Inertia

Learning Objectives

By the end of this section, you will be able to:

* Define mass and inertia.
« Understand Newton's first law of motion.

Experience suggests that an object at rest will remain at rest if left alone, and that an object in motion tends to slow down and
stop unless some effort is made to keep it moving. What Newton'’s first law of motion states, however, is the following:

Newton'’s First Law of Motion

There exists an inertial frame of reference such that a body at rest remains at rest, or, if in motion, remains in motion at a
constant velocity unless acted on by a net external force.

Note the repeated use of the verb “remains.” We can think of this law as preserving the status quo of motion.

The first law of motion postulates the existence of at least one frame of reference which we call an inertial reference frame,
relative to which the motion of an object not subject to forces is a straight line at a constant speed. An inertial reference frame is
any reference frame that is not itself accelerating. A car traveling at constant velocity is an inertial reference frame. A car slowing
down for a stoplight, or speeding up after the light turns green, will be accelerating and is not an inertial reference frame. Finally,
when the car goes around a turn, which is due to an acceleration changing the direction of the velocity vector, it is not an inertial
reference frame. Note that Newton’s laws of motion are only valid for inertial reference frames.

Rather than contradicting our experience, Newton’s first law of motion states that there must be a cause (which is a net
external force) for there to be any change in velocity (either a change in magnitude or direction) in an inertial reference frame.
We will define net external force in the next section. An object sliding across a table or floor slows down due to the net force of
friction acting on the object. If friction disappeared, would the object still slow down?

The idea of cause and effect is crucial in accurately describing what happens in various situations. For example, consider what
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happens to an object sliding along a rough horizontal surface. The object quickly grinds to a halt. If we spray the surface with
talcum powder to make the surface smoother, the object slides farther. If we make the surface even smoother by rubbing
lubricating oil on it, the object slides farther yet. Extrapolating to a frictionless surface, we can imagine the object sliding in a
straight line indefinitely. Friction is thus the cause of the slowing (consistent with Newton’s first law). The object would not slow
down at all if friction were completely eliminated. Consider an air hockey table. When the air is turned off, the puck slides only a
short distance before friction slows it to a stop. However, when the air is turned on, it creates a nearly frictionless surface, and
the puck glides long distances without slowing down. Additionally, if we know enough about the friction, we can accurately predict
how quickly the object will slow down. Friction is an external force.

Newton’s first law is completely general and can be applied to anything from an object sliding on a table to a satellite in orbit to
blood pumped from the heart. Experiments have thoroughly verified that any change in velocity (speed or direction) must be
caused by an external force. The idea of generally applicable or universal laws is important not only here—it is a basic feature of
all laws of physics. Identifying these laws is like recognizing patterns in nature from which further patterns can be discovered.
The genius of Galileo, who first developed the idea for the first law, and Newton, who clarified it, was to ask the fundamental
question, “What is the cause?” Thinking in terms of cause and effect is a worldview fundamentally different from the typical
ancient Greek approach when questions such as “Why does a tiger have stripes?” would have been answered in Aristotelian
fashion, “That is the nature of the beast.” True perhaps, but not a useful insight.

Mass

The property of a body to remain at rest or to remain in motion with constant velocity is called inertia. Newton’s first law is often
called the law of inertia. As we know from experience, some objects have more inertia than others. It is obviously more difficult
to change the motion of a large boulder than that of a basketball, for example. The inertia of an object is measured by its mass.

An object with a small mass will exhibit less inertia and be more affected by other objects. An object with a large mass will exhibit
greater inertia and be less affected by other objects. This inertial mass of an object is a measure of how difficult it is to alter the
uniform motion of the object by an external force.

Roughly speaking, mass is a measure of the amount of “stuff’ (or matter) in something. The quantity or amount of matter in an
object is determined by the numbers of atoms and molecules of various types it contains. Unlike weight, mass does not vary with
location. The mass of an object is the same on Earth, in orbit, or on the surface of the Moon. In practice, it is very difficult to count
and identify all of the atoms and molecules in an object, so masses are not often determined in this manner. Operationally, the
masses of objects are determined by comparison with the standard kilogram.

Which has more mass: a kilogram of cotton balls or a kilogram of gold?
Solution

They are equal. A kilogram of one substance is equal in mass to a kilogram of another substance. The quantities that might
differ between them are volume and density.

4.3 Newton's Second Law of Motion: Concept of a System

Learning Objectives

By the end of this section, you will be able to:

« Define net force, external force, and system.
* Understand Newton’s second law of motion.
* Apply Newton'’s second law to determine the weight of an object.

Newton’s second law of motion is closely related to Newton's first law of motion. It mathematically states the cause and effect
relationship between force and changes in motion. Newton'’s second law of motion is more quantitative and is used extensively to
calculate what happens in situations involving a force. Before we can write down Newton'’s second law as a simple equation
giving the exact relationship of force, mass, and acceleration, we need to sharpen some ideas that have already been
mentioned.

First, what do we mean by a change in motion? The answer is that a change in motion is equivalent to a change in velocity. A
change in velocity means, by definition, that there is an acceleration. Newton'’s first law says that a net external force causes a
change in motion; thus, we see that a net external force causes acceleration.

Another question immediately arises. What do we mean by an external force? An intuitive notion of external is correct—an
external force acts from outside the system of interest. For example, in Figure 4.5(a) the system of interest is the wagon plus
the child in it. The two forces exerted by the other children are external forces. An internal force acts between elements of the
system. Again looking at Figure 4.5(a), the force the child in the wagon exerts to hang onto the wagon is an internal force
between elements of the system of interest. Only external forces affect the motion of a system, according to Newton'’s first law.
(The internal forces actually cancel, as we shall see in the next section.) You must define the boundaries of the system before
you can determine which forces are external. Sometimes the system is obvious, whereas other times identifying the boundaries
of a system is more subtle. The concept of a system is fundamental to many areas of physics, as is the correct application of
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Newton'’s laws. This concept will be revisited many times on our journey through physics.

When we describe the acceleration of a system, we are modeling the system as a single point which contains all of the mass of
that system. The point we choose for this is the point about which the system’s mass is evenly distributed. For example, in a rigid
object, this center of mass is the point where the object will stay balanced even if only supported at this point. For a sphere or
disk made of homogenous material, this point is of course at the center. Similarly, for a rod made of homogenous material, the
center of mass will be at the midpoint.

For the rider in the wagon in Figure 4.5, the center of mass is probably between the rider’s hips. Due to internal forces, the
rider’s hand or hair may accelerate slightly differently, but it is the acceleration of the system’s center of mass that interests us.
This is true whether the system is a vehicle carrying passengers, a bowl of grapes, or a planet. When we draw a free-body
diagram of a system, we represent the system’s center of mass with a single point and use vectors to indicate the forces exerted
on that center of mass. (See Figure 4.5.)

Free-body diagram

Each force acting Frat
on the system wlln \J
adds to produce |
a net force, Fpat. (b) '

Free-body diagram
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Figure 4.5 Different forces exerted on the same mass produce different accelerations. (a) Two children push a wagon with a child in it. Arrows
representing all external forces are shown. The system of interest is the wagon and its rider. The weight W of the system and the support of the

ground N are also shown for completeness and are assumed to cancel. The vector f represents the friction acting on the wagon, and it acts to the
left, opposing the motion of the wagon. (b) All of the external forces acting on the system add together to produce a net force, Fnet . The free-body

diagram shows all of the forces acting on the system of interest. The dot represents the center of mass of the system. Each force vector extends from
this dot. Because there are two forces acting to the right, we draw the vectors collinearly. (c) A larger net external force produces a larger acceleration (

a’'>a ) when an adult pushes the child.

Now, it seems reasonable that acceleration should be directly proportional to and in the same direction as the net (total) external
force acting on a system. This assumption has been verified experimentally and is illustrated in Figure 4.5. In part (a), a smaller
force causes a smaller acceleration than the larger force illustrated in part (c). For completeness, the vertical forces are also
shown; they are assumed to cancel since there is no acceleration in the vertical direction. The vertical forces are the weight w

and the support of the ground N, and the horizontal force f represents the force of friction. These will be discussed in more

detail in later sections. For now, we will define friction as a force that opposes the motion past each other of objects that are
touching. Figure 4.5(b) shows how vectors representing the external forces add together to produce a net force, F o .

To obtain an equation for Newton’s second law, we first write the relationship of acceleration and net external force as the
proportionality

a x Fne[ ] (41)

where the symbol o« means “proportional to,” and F.; is the net external force. (The net external force is the vector sum of

all external forces and can be determined graphically, using the head-to-tail method, or analytically, using components. The
technigues are the same as for the addition of other vectors, and are covered in Two-Dimensional Kinematics.) This
proportionality states what we have said in words—acceleration is directly proportional to the net external force. Once the system
of interest is chosen, it is important to identify the external forces and ignore the internal ones. It is a tremendous simplification
not to have to consider the numerous internal forces acting between objects within the system, such as muscular forces within
the child’s body, let alone the myriad of forces between atoms in the objects, but by doing so, we can easily solve some very
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complex problems with only minimal error due to our simplification

Now, it also seems reasonable that acceleration should be inversely proportional to the mass of the system. In other words, the
larger the mass (the inertia), the smaller the acceleration produced by a given force. And indeed, as illustrated in Figure 4.6, the
same net external force applied to a car produces a much smaller acceleration than when applied to a basketball. The
proportionality is written as

1 4.2
a(Xm ( )

where m is the mass of the system. Experiments have shown that acceleration is exactly inversely proportional to mass, just as
it is exactly linearly proportional to the net external force.

(.2 7 :

(a) (b)

The free-body diagrams for both objects are the same.
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Figure 4.6 The same force exerted on systems of different masses produces different accelerations. (a) A basketball player pushes on a basketball to
make a pass. (The effect of gravity on the ball is ignored.) (b) The same player exerts an identical force on a stalled SUV and produces a far smaller
acceleration (even if friction is negligible). (c) The free-body diagrams are identical, permitting direct comparison of the two situations. A series of
patterns for the free-body diagram will emerge as you do more problems.

Both of these proportionalities have been experimentally verified repeatedly and consistently, for a broad range of systems and
scales. Thus, it has been experimentally found that the acceleration of an object depends only on the net external force and the
mass of the object. Combining the two proportionalities just given yields Newton's second law of motion.

Applying the Science Practices: Testing the Relationship Between Mass, Acceleration, and Force
Plan three simple experiments using objects you have at home to test relationships between mass, acceleration, and force.

(a) Design an experiment to test the relationship between mass and acceleration. What will be the independent variable in
your experiment? What will be the dependent variable? What controls will you put in place to ensure force is constant?

(b) Design a similar experiment to test the relationship between mass and force. What will be the independent variable in
your experiment? What will be the dependent variable? What controls will you put in place to ensure acceleration is
constant?

(c) Design a similar experiment to test the relationship between force and acceleration. What will be the independent
variable in your experiment? What will be the dependent variable? Will you have any trouble ensuring that the mass is
constant?

What did you learn?

Newton’s Second Law of Motion

The acceleration of a system is directly proportional to and in the same direction as the net external force acting on the
system, and inversely proportional to its mass.

In equation form, Newton’s second law of motion is

2= F’%et' (4.3)
This is often written in the more familiar form
F ot = ma. (4.9

When only the magnitude of force and acceleration are considered, this equation is simply
F et = ma. (4.5)

Although these last two equations are really the same, the first gives more insight into what Newton’s second law means. The
law is a cause and effect relationship among three quantities that is not simply based on their definitions. The validity of the
second law is completely based on experimental verification.
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Applying the Science Practices: Systems and Free-Body Diagrams

First, consider a person on a sled sliding downhill. What is the system in this situation? Try to draw a free-body diagram
describing this system, labeling all the forces and their directions. Which of the forces are internal? Which are external?

Next, consider a person on a sled being pushed along level ground by a friend. What is the system in this situation? Try to
draw a free-body diagram describing this system, labelling all the forces and their directions. Which of the forces are
internal? Which are external?

Units of Force

F ot = ma is used to define the units of force in terms of the three basic units for mass, length, and time. The Sl unit of force is

called the newton (abbreviated N) and is the force needed to accelerate a 1-kg system at the rate of 1m/s? . That is, since
Fnet =ma,

IN=1kg - m/s% (4.6)

While almost the entire world uses the newton for the unit of force, in the United States the most familiar unit of force is the
pound (Ib), where 1 N = 0.225 Ib.

Weight and the Gravitational Force

When an object is dropped, it accelerates toward the center of Earth. Newton’s second law states that a net force on an object is
responsible for its acceleration. If air resistance is negligible, the net force on a falling object is the gravitational force, commonly
called its weight w . Weight can be denoted as a vector w because it has a direction; down is, by definition, the direction of

gravity, and hence weight is a downward force. The magnitude of weight is denoted as w . Galileo was instrumental in showing
that, in the absence of air resistance, all objects fall with the same acceleration g . Using Galileo’s result and Newton’s second

law, we can derive an equation for weight.

Consider an object with mass m falling downward toward Earth. It experiences only the downward force of gravity, which has
magnitude w . Newton’s second law states that the magnitude of the net external force on an objectis Fo = ma .

Since the object experiences only the downward force of gravity, F,,o¢ = W . We know that the acceleration of an object due to
gravity is g, or a = g . Substituting these into Newton’s second law gives

Weight
This is the equation for weight—the gravitational force on a mass m :

w = mg. 4.7)
Since g = 9.80 m/s? on Earth, the weight of a 1.0 kg object on Earth is 9.8 N, as we see:

w =mg = (1.0 kg)(9.80 m/s>) = 9.8 N. (4.8)

Recall that g can take a positive or negative value, depending on the positive direction in the coordinate system. Be sure to
take this into consideration when solving problems with weight.

When the net external force on an object is its weight, we say that it is in free-fall. That is, the only force acting on the object is
the force of gravity. In the real world, when objects fall downward toward Earth, they are never truly in free-fall because there is
always some upward force from the air acting on the object.

The acceleration due to gravity g varies slightly over the surface of Earth, so that the weight of an object depends on location
and is not an intrinsic property of the object. Weight varies dramatically if one leaves Earth’s surface. On the Moon, for example,

the acceleration due to gravity is only 1.67 m/s2. A 1.0-kg mass thus has a weight of 9.8 N on Earth and only about 1.7 N on
the Moon.

The broadest definition of weight in this sense is that the weight of an object is the gravitational force on it from the nearest large
body, such as Earth, the Moon, the Sun, and so on. This is the most common and useful definition of weight in physics. It differs
dramatically, however, from the definition of weight used by NASA and the popular media in relation to space travel and
exploration. When they speak of “weightlessness” and “microgravity,” they are really referring to the phenomenon we call “free-
fall” in physics. We shall use the above definition of weight, and we will make careful distinctions between free-fall and actual
weightlessness.

It is important to be aware that weight and mass are very different physical quantities, although they are closely related. Mass is
the guantity of matter (how much “stuff”) and does not vary in classical physics, whereas weight is the gravitational force and
does vary depending on gravity. It is tempting to equate the two, since most of our examples take place on Earth, where the
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weight of an object only varies a little with the location of the object. Furthermore, the terms mass and weight are used
interchangeably in everyday language; for example, our medical records often show our “weight” in kilograms, but never in the
correct units of newtons.

Common Misconceptions: Mass vs. Weight

Mass and weight are often used interchangeably in everyday language. However, in science, these terms are distinctly
different from one another. Mass is a measure of how much matter is in an object. The typical measure of mass is the
kilogram (or the “slug” in English units). Weight, on the other hand, is a measure of the force of gravity acting on an object.
Weight is equal to the mass of an object (72 ) multiplied by the acceleration due to gravity ( g ). Like any other force, weight

is measured in terms of newtons (or pounds in English units).

Assuming the mass of an object is kept intact, it will remain the same, regardless of its location. However, because weight
depends on the acceleration due to gravity, the weight of an object can change when the object enters into a region with

stronger or weaker gravity. For example, the acceleration due to gravity on the Moon is 1.67 m/s2 (which is much less than

the acceleration due to gravity on Earth, 9.80 m/s? ). If you measured your weight on Earth and then measured your weight

on the Moon, you would find that you “weigh” much less, even though you do not look any skinnier. This is because the force
of gravity is weaker on the Moon. In fact, when people say that they are “losing weight,” they really mean that they are losing
“mass” (which in turn causes them to weigh less).

Take-Home Experiment: Mass and Weight

What do bathroom scales measure? When you stand on a bathroom scale, what happens to the scale? It depresses slightly.
The scale contains springs that compress in proportion to your weight—similar to rubber bands expanding when pulled. The
springs provide a measure of your weight (for an object which is not accelerating). This is a force in newtons (or pounds). In
most countries, the measurement is divided by 9.80 to give a reading in mass units of kilograms. The scale measures weight
but is calibrated to provide information about mass. While standing on a bathroom scale, push down on a table next to you.
What happens to the reading? Why? Would your scale measure the same “mass” on Earth as on the Moon?

Example 4.1 What Acceleration Can a Person Produce when Pushing a Lawn Mower?

Suppose that the net external force (push minus friction) exerted on a lawn mower is 51 N (about 11 Ib) parallel to the
ground. The mass of the mower is 24 kg. What is its acceleration?

Fner

Figure 4.7 The net force on a lawn mower is 51 N to the right. At what rate does the lawn mower accelerate to the right?

Strategy
Since F ot and m are given, the acceleration can be calculated directly from Newton’s second law as stated in
F . =ma.
Solution
; : : F net ; i
The magnitude of the acceleration a is a = —;= . Entering known values gives
4 SIN (4.9)
24 kg

Substituting the units kg - m/s? for N yields
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_ 51kg-m/s? 2 (4.10)

Discussion

The direction of the acceleration is the same direction as that of the net force, which is parallel to the ground. There is no
information given in this example about the individual external forces acting on the system, but we can say something about
their relative magnitudes. For example, the force exerted by the person pushing the mower must be greater than the friction
opposing the motion (since we know the mower moves forward), and the vertical forces must cancel if there is to be no
acceleration in the vertical direction (the mower is moving only horizontally). The acceleration found is small enough to be
reasonable for a person pushing a mower. Such an effort would not last too long because the person’s top speed would
soon be reached.

Example 4.2 What Rocket Thrust Accelerates This Sled?

Prior to manned space flights, rocket sleds were used to test aircraft, missile equipment, and physiological effects on human
subjects at high speeds. They consisted of a platform that was mounted on one or two rails and propelled by several
rockets. Calculate the magnitude of force exerted by each rocket, called its thrust T , for the four-rocket propulsion system

shown in Figure 4.8. The sled’s initial acceleration is 49 m/sz, the mass of the system is 2100 kg, and the force of friction
opposing the motion is known to be 650 N.

Figure 4.8 A sled experiences a rocket thrust that accelerates it to the right. Each rocket creates an identical thrust T . As in other situations

where there is only horizontal acceleration, the vertical forces cancel. The ground exerts an upward force N onthe system that is equal in
magnitude and opposite in direction to its weight, W . The system here is the sled, its rockets, and rider, so none of the forces between these

objects are considered. The arrow representing friction ( f ) is drawn larger than scale.

Strategy

Although there are forces acting vertically and horizontally, we assume the vertical forces cancel since there is no vertical
acceleration. This leaves us with only horizontal forces and a simpler one-dimensional problem. Directions are indicated with
plus or minus signs, with right taken as the positive direction. See the free-body diagram in the figure.

Solution

Since acceleration, mass, and the force of friction are given, we start with Newton’s second law and look for ways to find the
thrust of the engines. Since we have defined the direction of the force and acceleration as acting “to the right,” we need to
consider only the magnitudes of these quantities in the calculations. Hence we begin with

Fnet = ma, (4.11)

where F.. is the net force along the horizontal direction. We can see from Figure 4.8 that the engine thrusts add, while
friction opposes the thrust. In equation form, the net external force is
Free=4T - f. 4.12)

Substituting this into Newton’s second law gives
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Fret =ma=4T — f. (4.13)
Using a little algebra, we solve for the total thrust 4T:
AT =ma + f. (4.14)
Substituting known values yields
4T = ma + f = (2100 kg)(49 m/s?) + 650 N. EL2)
So the total thrust is
4T = 1.0x10° N, (4.16)

and the individual thrusts are

. 4.17
T=10I0N_ 5 6x10*N. o

Discussion

The numbers are quite large, so the result might surprise you. Experiments such as this were performed in the early 1960s
to test the limits of human endurance and the setup designed to protect human subjects in jet fighter emergency ejections.
Speeds of 1000 km/h were obtained, with accelerations of 45 g's. (Recall that g, the acceleration due to gravity, is

9.80 m/s2 . When we say that an acceleration is 45 g's, itis 45%9.80 m/s? , which is approximately 440 m/s? .) While

living subjects are not used any more, land speeds of 10,000 km/h have been obtained with rocket sleds. In this example, as
in the preceding one, the system of interest is obvious. We will see in later examples that choosing the system of interest is
crucial—and the choice is not always obvious.

Newton’s second law of motion is more than a definition; it is a relationship among acceleration, force, and mass. It can help
us make predictions. Each of those physical quantities can be defined independently, so the second law tells us something
basic and universal about nature. The next section introduces the third and final law of motion.

Applying the Science Practices: Sums of Forces

Recall that forces are vector quantities, and therefore the net force acting on a system should be the vector sum of the
forces.

(a) Design an experiment to test this hypothesis. What sort of a system would be appropriate and convenient to have
multiple forces applied to it? What features of the system should be held constant? What could be varied? Can forces be
arranged in multiple directions so that, while the hypothesis is still tested, the resulting calculations are not too inconvenient?

(b) Another group of students has done such an experiment, using a motion capture system looking down at an air hockey
table to measure the motion of the 0.10-kg puck. The table was aligned with the cardinal directions, and a compressed air
hose was placed in the center of each side, capable of varying levels of force output and fixed so that it was aimed at the
center of the table.

Table 4.1

3 N north, 4 N west 48 + 4 m/s?
5 N south, 12 N east 132 + 6 m/s?
6 N north, 12 N east, 4 N west| 99 + 3 m/s2

Given the data in the table, is the hypothesis confirmed? What were the directions of the accelerations?

4.4 Newton's Third Law of Motion: Symmetry in Forces

Learning Objectives

By the end of this section, you will be able to:

» Understand Newton's third law of motion.
* Apply Newton's third law to define systems and solve problems of motion.

The information presented in this section supports the following AP® learning objectives and science practices:
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« 3.A.2.1 The student is able to represent forces in diagrams or mathematically using appropriately labeled vectors with
magnitude, direction, and units during the analysis of a situation. (S.P. 1.1)

¢ 3.A.3.1 The student is able to analyze a scenario and make claims (develop arguments, justify assertions) about the
forces exerted on an object by other objects for different types of forces or components of forces. (S.P. 6.4, 7.2)

« 3.A.3.3 The student is able to describe a force as an interaction between two objects and identify both objects for any
force. (S.P. 1.4)

« 3.A.4.1 The student is able to construct explanations of physical situations involving the interaction of bodies using
Newton's third law and the representation of action-reaction pairs of forces. (S.P. 1.4, 6.2)

« 3.A.4.2 The student is able to use Newton's third law to make claims and predictions about the action-reaction pairs of
forces when two objects interact. (S.P. 6.4, 7.2)

« 3.A.4.3 The student is able to analyze situations involving interactions among several objects by using free-body
diagrams that include the application of Newton's third law to identify forces. (S.P. 1.4)

« 3.B.2.1 The student is able to create and use free-body diagrams to analyze physical situations to solve problems with
motion qualitatively and quantitatively. (S.P. 1.1, 1.4, 2.2)

* 4.A.2.1 The student is able to make predictions about the motion of a system based on the fact that acceleration is
equal to the change in velocity per unit time, and velocity is equal to the change in position per unit time. (S.P. 6.4)

« 4.A.2.2 The student is able to evaluate using given data whether all the forces on a system or whether all the parts of a
system have been identified. (S.P. 5.3)

« 4.A.3.1 The student is able to apply Newton's second law to systems to calculate the change in the center-of-mass
velocity when an external force is exerted on the system. (S.P. 2.2)

There is a passage in the musical Man of la Mancha that relates to Newton’s third law of motion. Sancho, in describing a fight
with his wife to Don Quixote, says, “Of course | hit her back, Your Grace, but she’s a lot harder than me and you know what they
say, ‘Whether the stone hits the pitcher or the pitcher hits the stone, it's going to be bad for the pitcher.” This is exactly what
happens whenever one body exerts a force on another—the first also experiences a force (equal in magnitude and opposite in
direction). Numerous common experiences, such as stubbing a toe or throwing a ball, confirm this. It is precisely stated in
Newton'’s third law of motion.

Newton’s Third Law of Motion

Whenever one body exerts a force on a second body, the first body experiences a force that is equal in magnitude and
opposite in direction to the force that it exerts.

This law represents a certain symmetry in nature: Forces always occur in pairs, and one body cannot exert a force on another
without experiencing a force itself. We sometimes refer to this law loosely as “action-reaction,” where the force exerted is the
action and the force experienced as a consequence is the reaction. Newton’s third law has practical uses in analyzing the origin
of forces and understanding which forces are external to a system.

We can readily see Newton'’s third law at work by taking a look at how people move about. Consider a swimmer pushing off from
the side of a pool, as illustrated in Figure 4.9. She pushes against the pool wall with her feet and accelerates in the direction
opposite to that of her push. The wall has exerted an equal and opposite force back on the swimmer. You might think that two
equal and opposite forces would cancel, but they do not because they act on different systems. In this case, there are two
systems that we could investigate: the swimmer or the wall. If we select the swimmer to be the system of interest, as in the
figure, then F ¢ is an external force on this system and affects its motion. The swimmer moves in the direction of

F

directly affect the motion of the system and does not cancel F,j on feet - NOte that the swimmer pushes in the direction

wall on fee

wall on feet - In contrast, the force Foo o wan acts on the wall and not on our system of interest. Thus Foop o war does not

opposite to that in which she wishes to move. The reaction to her push is thus in the desired direction.
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System of interest

(7 Free-body Diagram

) I — BF
— I:wall on feet @
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Figure 4.9 When the swimmer exerts a force Ffeet on wall ©On the wall, she accelerates in the direction opposite to that of her push. This means the
net external force on her is in the direction opposite to Ffeet on wall - This opposition occurs because, in accordance with Newton’s third law of
motion, the wall exerts a force Fwall on feet ON her, equal in magnitude but in the direction opposite to the one she exerts on it. The line around the
swimmer indicates the system of interest. Note that Ffeet on wall does notact on this system (the swimmer) and, thus, does not cancel

F

supporting the swimmer’s weight. The vertical forces W and BF cancel since there is no vertical motion.

wall on feet - Thus the free-body diagram shows only Fwall on feet + W, the gravitational force, and BF | the buoyant force of the water

Similarly, when a person stands on Earth, the Earth exerts a force on the person, pulling the person toward the Earth. As stated
by Newton'’s third law of motion, the person also exerts a force that is equal in magnitude, but opposite in direction, pulling the
Earth up toward the person. Since the mass of the Earth is so great, however, and F' = ma , the acceleration of the Earth

toward the person is not noticeable.

Other examples of Newton'’s third law are easy to find. As a professor paces in front of a whiteboard, she exerts a force
backward on the floor. The floor exerts a reaction force forward on the professor that causes her to accelerate forward. Similarly,
a car accelerates because the ground pushes forward on the drive wheels in reaction to the drive wheels pushing backward on
the ground. You can see evidence of the wheels pushing backward when tires spin on a gravel road and throw rocks backward.
In another example, rockets move forward by expelling gas backward at high velocity. This means the rocket exerts a large
backward force on the gas in the rocket combustion chamber, and the gas therefore exerts a large reaction force forward on the
rocket. This reaction force is called thrust. It is a common misconception that rockets propel themselves by pushing on the
ground or on the air behind them. They actually work better in a vacuum, where they can more readily expel the exhaust gases.
Helicopters similarly create lift by pushing air down, thereby experiencing an upward reaction force. Birds and airplanes also fly
by exerting force on air in a direction opposite to that of whatever force they need. For example, the wings of a bird force air
downward and backward in order to get lift and move forward. An octopus propels itself in the water by ejecting water through a
funnel from its body, similar to a jet ski. In a situation similar to Sancho’s, professional cage fighters experience reaction forces
when they punch, sometimes breaking their hand by hitting an opponent’s body.

Example 4.3 Getting Up To Speed: Choosing the Correct System

A physics professor pushes a cart of demonstration equipment to a lecture hall, as seen in Figure 4.10. Her mass is 65.0
kg, the cart’s is 12.0 kg, and the equipment’s is 7.0 kg. Calculate the acceleration produced when the professor exerts a
backward force of 150 N on the floor. All forces opposing the motion, such as friction on the cart's wheels and air resistance,
total 24.0 N.
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Free body diagrams
l

N
f Fﬂccl

-—— 1

w

System 1

System 2

Figure 4.10 A professor pushes a cart of demonstration equipment. The lengths of the arrows are proportional to the magnitudes of the forces
(except for f | since it is too small to draw to scale). Different questions are asked in each example; thus, the system of interest must be defined

differently for each. System 1 is appropriate for this example, since it asks for the acceleration of the entire group of objects. Only Fﬂoo and f

are external forces acting on System 1 along the line of motion. All other forces either cancel or act on the outside world. System 2 is chosen for
Example 4.4 so that Fprof will be an external force and enter into Newton’s second law. Note that the free-body diagrams, which allow us to

apply Newton's second law, vary with the system chosen.

Strategy

Since they accelerate as a unit, we define the system to be the professor, cart, and equipment. This is System 1 in Figure
4.10. The professor pushes backward with a force F ;. of 150 N. According to Newton'’s third law, the floor exerts a

forward reaction force Fy,, of 150 N on System 1. Because all motion is horizontal, we can assume there is no net force
in the vertical direction. The problem is therefore one-dimensional along the horizontal direction. As noted, f opposes the
motion and is thus in the opposite direction of Fg, . Note that we do not include the forces Fprof or F .t because
these are internal forces, and we do not include F foot DEcause it acts on the floor, not on the system. There are no other

significant forces acting on System 1. If the net external force can be found from all this information, we can use Newton's
second law to find the acceleration as requested. See the free-body diagram in the figure.

Solution
Newton’s second law is given by

F oot (4.18)
a=—=

The net external force on System 1 is deduced from Figure 4.10 and the discussion above to be
Fret=Fpoo —f=150N-240N =126 N. (4.19)

The mass of System 1 is
m = (65.0+12.0 + 7.0) kg = 84 kg. (4.20)

These values of F.; and m produce an acceleration of

4.21

a= P;;}let, ( )
_ 126N _ 2
a_—84kg 1.5 m/s”.

Discussion

None of the forces between components of System 1, such as between the professor’s hands and the cart, contribute to the
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net external force because they are internal to System 1. Another way to look at this is to note that forces between
components of a system cancel because they are equal in magnitude and opposite in direction. For example, the force
exerted by the professor on the cart results in an equal and opposite force back on her. In this case both forces act on the
same system and, therefore, cancel. Thus internal forces (between components of a system) cancel. Choosing System 1
was crucial to solving this problem.

Example 4.4 Force on the Cart—Choosing a New System

Calculate the force the professor exerts on the cart in Figure 4.10 using data from the previous example if needed.
Strategy

If we now define the system of interest to be the cart plus equipment (System 2 in Figure 4.10), then the net external force
on System 2 is the force the professor exerts on the cart minus friction. The force she exerts on the cart, Fprof ,isan

external force acting on System 2. F . - was internal to System 1, but it is external to System 2 and will enter Newton’s

pro:
second law for System 2.
Solution

Newton’s second law can be used to find Fpmf . Starting with

4.22
a=5 2

and noting that the magnitude of the net external force on System 2 is
Fret = Fprof -/ (4.23)

we solve for F prof - the desired quantity:
Fiorof = Fret + f- (4.24)

The value of f is given, so we must calculate net ., . That can be done since both the acceleration and mass of System
2 are known. Using Newton’s second law we see that
F et = ma, (4.25)

where the mass of System 2 is 19.0 kg (m = 12.0 kg + 7.0 kg) and its acceleration was found to be a = 1.5 m/s? in the
previous example. Thus,

F oo = ma, (4.26)
Foe = (19.0kg)(1.5 m/s?) = 29 N. w7
Now we can find the desired force:
Florof = Fret + f5 (4.28)
Florof =29 N+24.0N =53 N. (4.29)

Discussion

It is interesting that this force is significantly less than the 150-N force the professor exerted backward on the floor. Not all of
that 150-N force is transmitted to the cart; some of it accelerates the professor.

The choice of a system is an important analytical step both in solving problems and in thoroughly understanding the physics
of the situation (which is not necessarily the same thing).

PhET Explorations: Gravity Force Lab

Visualize the gravitational force that two objects exert on each other. Change properties of the objects in order to see how it
changes the gravity force.
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PhET Interactive Simulation

Figure 4.11 Gravity Force Lab (http://cnx.org/content/m54849/1.3/gravity-force-lab_en.jar)

4.5 Normal, Tension, and Other Examples of Force

Learning Objectives

By the end of this section, you will be able to:

» Define normal and tension forces.
* Apply Newton's laws of motion to solve problems involving a variety of forces.
» Use trigonometric identities to resolve weight into components.

The information presented in this section supports the following AP® learning objectives and science practices:
+ 2.B.1.1 The student is able to apply F' = mg to calculate the gravitational force on an object with mass m in a

gravitational field of strength g in the context of the effects of a net force on objects and systems. (S.P. 2.2, 7.2)

* 3.A.2.1 The student is able to represent forces in diagrams or mathematically using appropriately labeled vectors with
magnitude, direction, and units during the analysis of a situation. (S.P. 1.1)

* 3.A.3.1 The student is able to analyze a scenario and make claims (develop arguments, justify assertions) about the
forces exerted on an object by other objects for different types of forces or components of forces. (S.P. 6.4, 7.2)

« 3.A.3.3 The student is able to describe a force as an interaction between two objects and identify both objects for any
force. (S.P. 1.4)

« 3.A.4.1 The student is able to construct explanations of physical situations involving the interaction of bodies using
Newton's third law and the representation of action-reaction pairs of forces. (S.P. 1.4, 6.2)

* 3.A.4.2 The student is able to use Newton's third law to make claims and predictions about the action-reaction pairs of
forces when two objects interact. (S.P. 6.4, 7.2)

« 3.A.4.3 The student is able to analyze situations involving interactions among several objects by using free-body
diagrams that include the application of Newton's third law to identify forces. (S.P. 1.4)

« 3.B.1.3 The student is able to re-express a free-body diagram representation into a mathematical representation and
solve the mathematical representation for the acceleration of the object. (S.P. 1.5, 2.2)

« 3.B.2.1 The student is able to create and use free-body diagrams to analyze physical situations to solve problems with
motion qualitatively and quantitatively. (S.P. 1.1, 1.4, 2.2)

Forces are given many names, such as push, pull, thrust, lift, weight, friction, and tension. Traditionally, forces have been
grouped into several categories and given names relating to their source, how they are transmitted, or their effects. The most
important of these categories are discussed in this section, together with some interesting applications. Further examples of
forces are discussed later in this text.

Normal Force

Weight (also called force of gravity) is a pervasive force that acts at all times and must be counteracted to keep an object from
falling. You definitely notice that you must support the weight of a heavy object by pushing up on it when you hold it stationary, as
illustrated in Figure 4.12(a). But how do inanimate objects like a table support the weight of a mass placed on them, such as
shown in Figure 4.12(b)? When the bag of dog food is placed on the table, the table actually sags slightly under the load. This
would be noticeable if the load were placed on a card table, but even rigid objects deform when a force is applied to them.
Unless the object is deformed beyond its limit, it will exert a restoring force much like a deformed spring (or trampoline or diving
board). The greater the deformation, the greater the restoring force. So when the load is placed on the table, the table sags until
the restoring force becomes as large as the weight of the load. At this point the net external force on the load is zero. That is the
situation when the load is stationary on the table. The table sags quickly, and the sag is slight so we do not notice it. But it is
similar to the sagging of a trampoline when you climb onto it.


http://cnx.org/content/m54849/1.3/gravity-force-lab_en.jar
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(b)
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Fhand
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Free-body diagrams
Figure 4.12 (a) The person holding the bag of dog food must supply an upward force Fhand equal in magnitude and opposite in direction to the
weight of the food W . (b) The card table sags when the dog food is placed on it, much like a stiff trampoline. Elastic restoring forces in the table grow

as it sags until they supply a force N equal in magnitude and opposite in direction to the weight of the load.

We must conclude that whatever supports a load, be it animate or not, must supply an upward force equal to the weight of the
load, as we assumed in a few of the previous examples. If the force supporting a load is perpendicular to the surface of contact
between the load and its support, this force is defined to be a normal force and here is given the symbol N . (This is not the unit

for force N.) The word normal means perpendicular to a surface. The normal force can be less than the object’s weight if the
object is on an incline, as you will see in the next example.

Common Misconception: Normal Force (N) vs. Newton (N)

In this section we have introduced the quantity normal force, which is represented by the variable N . This should not be
confused with the symbol for the newton, which is also represented by the letter N. These symbols are particularly important
to distinguish because the units of a normal force (IN') happen to be newtons (N). For example, the normal force N that the
floor exerts on a chair might be N = 100 N . One important difference is that normal force is a vector, while the newton is

simply a unit. Be careful not to confuse these letters in your calculations! You will encounter more similarities among
variables and units as you proceed in physics. Another example of this is the quantity work ( W) and the unit watts (W).

Example 4.5 Weight on an Incline, a Two-Dimensional Problem

Consider the skier on a slope shown in Figure 4.13. Her mass including equipment is 60.0 kg. (a) What is her acceleration if
friction is negligible? (b) What is her acceleration if friction is known to be 45.0 N?
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‘E' Free-body diagram
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Figure 4.13 Since motion and friction are parallel to the slope, it is most convenient to project all forces onto a coordinate system where one axis
is parallel to the slope and the other is perpendicular (axes shown to left of skier). N is perpendicular to the slope and f is parallel to the slope,

but W has components along both axes, namely W, and W - N is equal in magnitude to W , so that there is no motion

perpendicular to the slope, but f is less than w I so that there is a downslope acceleration (along the parallel axis).

Strategy

This is a two-dimensional problem, since the forces on the skier (the system of interest) are not parallel. The approach we
have used in two-dimensional kinematics also works very well here. Choose a convenient coordinate system and project the
vectors onto its axes, creating two connected one-dimensional problems to solve. The most convenient coordinate system
for motion on an incline is one that has one coordinate parallel to the slope and one perpendicular to the slope. (Remember

that motions along mutually perpendicular axes are independent.) We use the symbols L and || to represent

perpendicular and parallel, respectively. This choice of axes simplifies this type of problem, because there is no motion
perpendicular to the slope and because friction is always parallel to the surface between two objects. The only external
forces acting on the system are the skier’s weight, friction, and the support of the slope, respectively labeled w, f,and N

in Figure 4.13. N is always perpendicular to the slope, and f is parallel to it. But W is not in the direction of either axis,
and so the first step we take is to project it into components along the chosen axes, defining w | to be the component of

weight parallel to the slope and w,; the component of weight perpendicular to the slope. Once this is done, we can

consider the two separate problems of forces parallel to the slope and forces perpendicular to the slope.
Solution

The magnitude of the component of the weight parallel to the slope is w | = w sin (25°) = mg sin (25°), and the

magnitude of the component of the weight perpendicular to the slopeis w| = w cos (25°) = mg cos (25°) .

(a) Neglecting friction. Since the acceleration is parallel to the slope, we need only consider forces parallel to the slope.
(Forces perpendicular to the slope add to zero, since there is no acceleration in that direction.) The forces parallel to the

slope are the amount of the skier’s weight parallel to the slope w I and friction f . Using Newton’s second law, with

subscripts to denote quantities parallel to the slope,

Fre | (4.30)
an=—m
where Fpo | =w | =mg sin (25°) , assuming no friction for this part, so that
F in (25° (4.31)
ay = Toel _mesin@s) o)
(9.80 m/s2)(0.4226) = 4.14 m/s> (4.32)

is the acceleration.

(b) Including friction. We now have a given value for friction, and we know its direction is parallel to the slope and it opposes
motion between surfaces in contact. So the net external force is now

Freep =wy =1, (4.33)

Fnet||
m

and substituting this into Newton’s second law, a = gives
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_Foep Wy —f  mgsin(25°) - f (4.34)
aWE=F—m T m - m .
We substitute known values to obtain
a. = (60.0 kg)(9.80 m/sz)(0.4226) —450N (4.35)
= 60.0 kg :
which yields
ay =3.39m/s% (4.36)

which is the acceleration parallel to the incline when there is 45.0 N of opposing friction.
Discussion

Since friction always opposes motion between surfaces, the acceleration is smaller when there is friction than when there is
none. In fact, it is a general result that if friction on an incline is negligible, then the acceleration down the incline is
a = g sinf , regardless of mass. This is related to the previously discussed fact that all objects fall with the same

acceleration in the absence of air resistance. Similarly, all objects, regardless of mass, slide down a frictionless incline with
the same acceleration (if the angle is the same).

Resolving Weight into Components

w| = wsin(0) = mg sin(6)
w, = wcos(#) = mg cos(8)

8

Figure 4.14 An object rests on an incline that makes an angle 6 with the horizontal.

When an object rests on an incline that makes an angle € with the horizontal, the force of gravity acting on the object is
divided into two components: a force acting perpendicular to the plane, w; , and a force acting parallel to the plane, w I

. The perpendicular force of weight, w, , is typically equal in magnitude and opposite in direction to the normal force, N.
The force acting parallel to the plane, w | - causes the object to accelerate down the incline. The force of friction, f,

opposes the motion of the object, so it acts upward along the plane.

It is important to be careful when resolving the weight of the object into components. If the angle of the incline is at an angle
6 to the horizontal, then the magnitudes of the weight components are

W =w sin (0) = mg sin (6) (4.37)
and
w, =wcos () = mg cos (0). (4.38)

Instead of memorizing these equations, it is helpful to be able to determine them from reason. To do this, draw the right
triangle formed by the three weight vectors. Notice that the angle € of the incline is the same as the angle formed between

w and W, . Knowing this property, you can use trigonometry to determine the magnitude of the weight components:

cos (@) = % )

W = wcos (0) = mg cos (0)

sin (@) = —IL (4.40)
W

W = wsin (0) = mg sin (0)
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Take-Home Experiment: Force Parallel

To investigate how a force parallel to an inclined plane changes, find a rubber band, some objects to hang from the end of
the rubber band, and a board you can position at different angles. How much does the rubber band stretch when you hang
the object from the end of the board? Now place the board at an angle so that the object slides off when placed on the
board. How much does the rubber band extend if it is lined up parallel to the board and used to hold the object stationary on
the board? Try two more angles. What does this show?

Tension

A tension is a force along the length of a medium, especially a force carried by a flexible medium, such as a rope or cable. The
word “tension” comes from a Latin word meaning “to stretch.” Not coincidentally, the flexible cords that carry muscle forces to
other parts of the body are called tendons. Any flexible connector, such as a string, rope, chain, wire, or cable, can exert pulls
only parallel to its length; thus, a force carried by a flexible connector is a tension with direction parallel to the connector. It is
important to understand that tension is a pull in a connector. In contrast, consider the phrase: “You can't push a rope.” The
tension force pulls outward along the two ends of a rope.

Consider a person holding a mass on a rope as shown in Figure 4.15.

T Free-body diagram

Figure 4.15 When a perfectly flexible connector (one requiring no force to bend it) such as this rope transmits a force T , that force must be parallel to

the length of the rope, as shown. The pull such a flexible connector exerts is a tension. Note that the rope pulls with equal force but in opposite
directions on the hand and the supported mass (neglecting the weight of the rope). This is an example of Newton'’s third law. The rope is the medium
that carries the equal and opposite forces between the two objects. The tension anywhere in the rope between the hand and the mass is equal. Once
you have determined the tension in one location, you have determined the tension at all locations along the rope.

Tension in the rope must equal the weight of the supported mass, as we can prove using Newton’s second law. If the 5.00-kg
mass in the figure is stationary, then its acceleration is zero, and thus F .. = 0. The only external forces acting on the mass are

its weight w and the tension T supplied by the rope. Thus,
Free=T—-w=0, (4.41)
where T and w are the magnitudes of the tension and weight and their signs indicate direction, with up being positive here.

Thus, just as you would expect, the tension equals the weight of the supported mass:
T =w=mg. (4.42)

For a 5.00-kg mass, then (neglecting the mass of the rope) we see that
T = mg = (5.00 kg)(9.80 m/s?) = 49.0 N. (4.43)

If we cut the rope and insert a spring, the spring would extend a length corresponding to a force of 49.0 N, providing a direct
observation and measure of the tension force in the rope.

Flexible connectors are often used to transmit forces around corners, such as in a hospital traction system, a finger joint, or a
bicycle brake cable. If there is no friction, the tension is transmitted undiminished. Only its direction changes, and it is always
parallel to the flexible connector. This is illustrated in Figure 4.16 (a) and (b).
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Extensor muscle

Tendon

(a) Flexor muscle Tendon

Figure 4.16 (a) Tendons in the finger carry force T from the muscles to other parts of the finger, usually changing the force’s direction, but not its
magnitude (the tendons are relatively friction free). (b) The brake cable on a bicycle carries the tension T from the handlebars to the brake

mechanism. Again, the direction but not the magnitude of T is changed.

Example 4.6 What Is the Tension in a Tightrope?

Calculate the tension in the wire supporting the 70.0-kg tightrope walker shown in Figure 4.17.

€
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S
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3"] W
-— .
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W

Figure 4.17 The weight of a tightrope walker causes a wire to sag by 5.0 degrees. The system of interest here is the point in the wire at which the
tightrope walker is standing.
Strategy

As you can see in the figure, the wire is not perfectly horizontal (it cannot be!), but is bent under the person’s weight. Thus,
the tension on either side of the person has an upward component that can support his weight. As usual, forces are vectors
represented pictorially by arrows having the same directions as the forces and lengths proportional to their magnitudes. The
system is the tightrope walker, and the only external forces acting on him are his weight w and the two tensions T (left

tension) and Ty (right tension), as illustrated. It is reasonable to neglect the weight of the wire itself. The net external force

is zero since the system is stationary. A little trigonometry can now be used to find the tensions. One conclusion is possible
at the outset—we can see from part (b) of the figure that the magnitudes of the tensions 77 and Ty must be equal. This is

because there is no horizontal acceleration in the rope, and the only forces acting to the left and right are 77 and T'p.
Thus, the magnitude of those forces must be equal so that they cancel each other out.

Whenever we have two-dimensional vector problems in which no two vectors are parallel, the easiest method of solution is
to pick a convenient coordinate system and project the vectors onto its axes. In this case the best coordinate system has
one axis horizontal and the other vertical. We call the horizontal the x -axis and the vertical the y -axis.
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Solution

First, we need to resolve the tension vectors into their horizontal and vertical components. It helps to draw a new free-body
diagram showing all of the horizontal and vertical components of each force acting on the system.

T 5.0° Free-body diagram
T1_J,- f.-__ 9 _'_H,_,.--"'f'- :
Ll & s S R e e e —— - 1' Ly
TLx * TH:,-
- L ]
TI.JI: Tﬁ.lr
W)
5.0**“__\%_& T.
=7 "l.Tm, netF,=0 netF,=0
T s - -
TH.::

Figure 4.18 When the vectors are projected onto vertical and horizontal axes, their components along those axes must add to zero, since the
tightrope walker is stationary. The small angle results in 7" being much greater than W .

Consider the horizontal components of the forces (denoted with a subscript x):
Fretx = Ty — TRy (4.44)
The net external horizontal force F ¢, = 0, since the person is stationary. Thus,
Free =0 = Tp,—Tgy (4.45)
Tr = Tgry-

Now, observe Figure 4.18. You can use trigonometry to determine the magnitude of 77, and T§ . Notice that:

4.46
cos (5.0° = Ty (4.49)
Ty
T = T7 cos (5.0°
o _ IRy
cos (5.0° = T_R
TR, = Ty cos (5.0°.
Equating 77, and Tg,:
Ty cos (5.0°) = Ty cos (5.0°). (4.47)
Thus,
T, =Tg=T, (4.48)

as predicted. Now, considering the vertical components (denoted by a subscript y ), we can solve for T . Again, since the
person is stationary, Newton’s second law implies that net Fy = (. Thus, as illustrated in the free-body diagram in Figure
4.18,

Fnety = TLy + TRy —w=0. (4.49)
Observing Figure 4.18, we can use trigonometry to determine the relationship between TLy , TRy ,and T . As we

determined from the analysis in the horizontal direction, T, = Tg =T :

T (4.50)
sin (5.0°) =
Ty
Ty, =Tp sin(53.0° = Tsin(5.09
: o TRy
S (50) = T_R

Try=Tr sin (5.0°) = T sin (5.0°).
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Now, we can substitute the values for TLy and TRy, into the net force equation in the vertical direction:

Fnety = TLy + TRy -w=0 (451)
F ety = Tsin (5.0°) + T'sin (5.0 —w =0
2Tsin (5.0 —w = 0
2 T sin (5.0°) = w
and
T= W —__Mme (4.52)
2sin (5.0°) 2 sin (5.0°)°
so that
7 - (10.0kg)(9.80 m/s?) (4.53)
B 2(0.0872) ’
and the tension is
T = 3900 N. (4.54)

Discussion

Note that the vertical tension in the wire acts as a normal force that supports the weight of the tightrope walker. The tension
is almost six times the 686-N weight of the tightrope walker. Since the wire is nearly horizontal, the vertical component of its
tension is only a small fraction of the tension in the wire. The large horizontal components are in opposite directions and
cancel, and so most of the tension in the wire is not used to support the weight of the tightrope walker.

If we wish to create a very large tension, all we have to do is exert a force perpendicular to a flexible connector, as illustrated in
Figure 4.19. As we saw in the last example, the weight of the tightrope walker acted as a force perpendicular to the rope. We
saw that the tension in the roped related to the weight of the tightrope walker in the following way:

T=—W (4.55)
2 sin (0)
We can extend this expression to describe the tension T created when a perpendicular force (F | ) is exerted at the middle of
a flexible connector:
T = F (4.56)
2 sin (0)°

Note that @ is the angle between the horizontal and the bent connector. In this case, T becomes very large as @ approaches
zero. Even the relatively small weight of any flexible connector will cause it to sag, since an infinite tension would result if it were
horizontal (i.e., # = 0 and sin @ = 0). (See Figure 4.19.)

Figure 4.19 We can create a very large tension in the chain by pushing on it perpendicular to its length, as shown. Suppose we wish to pull a car out of
the mud when no tow truck is available. Each time the car moves forward, the chain is tightened to keep it as nearly straight as possible. The tension in

the chain is given by T= —1 :since @ issmall, T is very large. This situation is analogous to the tightrope walker shown in Figure 4.17,

2 sin (6)

except that the tensions shown here are those transmitted to the car and the tree rather than those acting at the point where FJ_ is applied.
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Figure 4.20 Unless an infinite tension is exerted, any flexible connector—such as the chain at the bottom of the picture—will sag under its own weight,
giving a characteristic curve when the weight is evenly distributed along the length. Suspension bridges—such as the Golden Gate Bridge shown in
this image—are essentially very heavy flexible connectors. The weight of the bridge is evenly distributed along the length of flexible connectors, usually
cables, which take on the characteristic shape. (credit: Leaflet, Wikimedia Commons)

Extended Topic: Real Forces and Inertial Frames

There is another distinction among forces in addition to the types already mentioned. Some forces are real, whereas others are
not. Real forces are those that have some physical origin, such as the gravitational pull. Contrastingly, fictitious forces are those
that arise simply because an observer is in an accelerating frame of reference, such as one that rotates (like a merry-go-round)
or undergoes linear acceleration (like a car slowing down). For example, if a satellite is heading due north above Earth’s northern
hemisphere, then to an observer on Earth it will appear to experience a force to the west that has no physical origin. Of course,
what is happening here is that Earth is rotating toward the east and moves east under the satellite. In Earth’s frame this looks like
a westward force on the satellite, or it can be interpreted as a violation of Newton'’s first law (the law of inertia). An inertial frame
of reference is one in which all forces are real and, equivalently, one in which Newton’s laws have the simple forms given in this
chapter.

Earth'’s rotation is slow enough that Earth is nearly an inertial frame. You ordinarily must perform precise experiments to observe
fictitious forces and the slight departures from Newton'’s laws, such as the effect just described. On the large scale, such as for
the rotation of weather systems and ocean currents, the effects can be easily observed.

The crucial factor in determining whether a frame of reference is inertial is whether it accelerates or rotates relative to a known
inertial frame. Unless stated otherwise, all phenomena discussed in this text are considered in inertial frames.

All the forces discussed in this section are real forces, but there are a number of other real forces, such as lift and thrust, that are
not discussed in this section. They are more specialized, and it is not necessary to discuss every type of force. It is natural,
however, to ask where the basic simplicity we seek to find in physics is in the long list of forces. Are some more basic than
others? Are some different manifestations of the same underlying force? The answer to both questions is yes, as will be seen in
the next (extended) section and in the treatment of modern physics later in the text.

PhET Explorations: Forces in 1 Dimension

Explore the forces at work when you try to push a filing cabinet. Create an applied force and see the resulting friction force
and total force acting on the cabinet. Charts show the forces, position, velocity, and acceleration vs. time. View a free-body
diagram of all the forces (including gravitational and normal forces).

PhET Interactive Simulation

Figure 4.21 Forces in 1 Dimension (http://cnx.org/content/m54857/1.4/forces-1d_en.jar)

4.6 Problem-Solving Strategies

Learning Objectives

By the end of this section, you will be able to:
* Apply a problem-solving procedure to solve problems using Newton's laws of motion



http://cnx.org/content/m54857/1.4/forces-1d_en.jar

168 Chapter 4 | Dynamics: Force and Newton's Laws of Motion

The information presented in this section supports the following AP® learning objectives and science practices:

» 3.A.2.1 The student is able to represent forces in diagrams or mathematically using appropriately labeled vectors with
magnitude, direction, and units during the analysis of a situation. (S.P. 1.1)

» 3.A.3.3 The student is able to describe a force as an interaction between two objects and identify both objects for any
force. (S.P. 1.4)

+ 3.B.1.1 The student is able to predict the motion of an object subject to forces exerted by several objects using an
application of Newton's second law in a variety of physical situations with acceleration in one dimension. (S.P. 6.4, 7.2)

» 3.B.1.3 The student is able to re-express a free-body diagram representation into a mathematical representation and
solve the mathematical representation for the acceleration of the object. (S.P. 1.5, 2.2)

» 3.B.2.1 The student is able to create and use free-body diagrams to analyze physical situations to solve problems with
motion qualitatively and quantitatively. (S.P. 1.1, 1.4, 2.2)

Success in problem solving is obviously necessary to understand and apply physical principles, not to mention the more
immediate need of passing exams. The basics of problem solving, presented earlier in this text, are followed here, but specific
strategies useful in applying Newton’s laws of motion are emphasized. These techniques also reinforce concepts that are useful
in many other areas of physics. Many problem-solving strategies are stated outright in the worked examples, and so the following
techniques should reinforce skills you have already begun to develop.

Problem-Solving Strategy for Newton’s Laws of Motion

Step 1. As usual, it is first necessary to identify the physical principles involved. Once it is determined that Newton’s laws of
motion are involved (if the problem involves forces), it is particularly important to draw a careful sketch of the situation. Such a
sketch is shown in Figure 4.22(a). Then, as in Figure 4.22(b), use arrows to represent all forces, label them carefully, and make
their lengths and directions correspond to the forces they represent (whenever sufficient information exists).

] ' 2

2 g
§ T
f _ This force is not a force on
’ ™, the system of interest since it
2 is exerted on the outside world.

W 7 It must be omitted from the

/4 /4 free-body diagram

' ;.;- N FT

T
ﬁ | ﬁ TA =~_~ System of interest
2 Uit w
w
1T These forces must be equal
Free-body A Qo
o di and opposite since the
iagram :
net external force is zero.
i P Thus T=-w

(@) (b) (©) (d)

Sketch Identify forces Define system of interest Add forces

Figure 4.22 (a) A sketch of Tarzan hanging from a vine. (b) Arrows are used to represent all forces. T is the tension in the vine above Tarzan, FT is

the force he exerts on the vine, and W is his weight. All other forces, such as the nudge of a breeze, are assumed negligible. (c) Suppose we are
given the ape man’s mass and asked to find the tension in the vine. We then define the system of interest as shown and draw a free-body diagram.
FT is no longer shown, because it is not a force acting on the system of interest; rather, FT acts on the outside world. (d) Showing only the arrows,

the head-to-tail method of addition is used. It is apparent that T = -w,ifTarzanis stationary.

Step 2. Identify what needs to be determined and what is known or can be inferred from the problem as stated. That is, make a
list of knowns and unknowns. Then carefully determine the system of interest. This decision is a crucial step, since Newton’s
second law involves only external forces. Once the system of interest has been identified, it becomes possible to determine
which forces are external and which are internal, a necessary step to employ Newton’s second law. (See Figure 4.22(c).)
Newton'’s third law may be used to identify whether forces are exerted between components of a system (internal) or between
the system and something outside (external). As illustrated earlier in this chapter, the system of interest depends on what
question we need to answer. This choice becomes easier with practice, eventually developing into an almost unconscious
process. Skill in clearly defining systems will be beneficial in later chapters as well.
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A diagram showing the system of interest and all of the external forces is called a free-body diagram. Only forces are shown on
free-body diagrams, not acceleration or velocity. We have drawn several of these in worked examples. Figure 4.22(c) shows a
free-body diagram for the system of interest. Note that no internal forces are shown in a free-body diagram.

Step 3. Once a free-body diagram is drawn, Newton’s second law can be applied to solve the problem. This is done in Figure
4.22(d) for a particular situation. In general, once external forces are clearly identified in free-body diagrams, it should be a
straightforward task to put them into equation form and solve for the unknown, as done in all previous examples. If the problem is
one-dimensional—that is, if all forces are parallel—then they add like scalars. If the problem is two-dimensional, then it must be
broken down into a pair of one-dimensional problems. This is done by projecting the force vectors onto a set of axes chosen for
convenience. As seen in previous examples, the choice of axes can simplify the problem. For example, when an incline is
involved, a set of axes with one axis parallel to the incline and one perpendicular to it is most convenient. It is almost always
convenient to make one axis parallel to the direction of motion, if this is known.

Applying Newton’s Second Law

Before you write net force equations, it is critical to determine whether the system is accelerating in a particular direction. If
the acceleration is zero in a particular direction, then the net force is zero in that direction. Similarly, if the acceleration is
nonzero in a particular direction, then the net force is described by the equation: F',o; = ma .

For example, if the system is accelerating in the horizontal direction, but it is not accelerating in the vertical direction, then
you will have the following conclusions:

F et x = ma, (4.57)
Fpety = 0. (4.58)

You will need this information in order to determine unknown forces acting in a system.

Step 4. As always, check the solution to see whether it is reasonable. In some cases, this is obvious. For example, it is
reasonable to find that friction causes an object to slide down an incline more slowly than when no friction exists. In practice,
intuition develops gradually through problem solving, and with experience it becomes progressively easier to judge whether an
answer is reasonable. Another way to check your solution is to check the units. If you are solving for force and end up with units
of m/s, then you have made a mistake.

4.7 Further Applications of Newton's Laws of Motion

Learning Objectives

By the end of this section, you will be able to:

» Apply problem-solving technigues to solve for quantities in more complex systems of forces.
* Integrate concepts from kinematics to solve problems using Newton's laws of motion.

The information presented in this section supports the following AP® learning objectives and science practices:

* 3.A.2.1 The student is able to represent forces in diagrams or mathematically using appropriately labeled vectors with
magnitude, direction, and units during the analysis of a situation. (S.P. 1.1)

* 3.A.3.1 The student is able to analyze a scenario and make claims (develop arguments, justify assertions) about the
forces exerted on an object by other objects for different types of forces or components of forces. (S.P. 6.4, 7.2)

» 3.A.3.3 The student is able to describe a force as an interaction between two objects and identify both objects for any
force. (S.P. 1.4)

« 3.B.1.1 The student is able to predict the motion of an object subject to forces exerted by several objects using an
application of Newton's second law in a variety of physical situations with acceleration in one dimension. (S.P. 6.4, 7.2)

« 3.B.1.3 The student is able to re-express a free-body diagram representation into a mathematical representation and
solve the mathematical representation for the acceleration of the object. (S.P. 1.5, 2.2)

« 3.B.2.1 The student is able to create and use free-body diagrams to analyze physical situations to solve problems with
motion qualitatively and quantitatively. (S.P. 1.1, 1.4, 2.2)

There are many interesting applications of Newton’s laws of motion, a few more of which are presented in this section. These
serve also to illustrate some further subtleties of physics and to help build problem-solving skills.

Example 4.7 Drag Force on a Barge

Suppose two tugboats push on a barge at different angles, as shown in Figure 4.23. The first tugboat exerts a force of
2.7x10° N in the x-direction, and the second tugboat exerts a force of 3.6X 107 N in the y-direction.
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F.=27x10°N

F,=3.6x10°N

(a) (b)

Figure 4.23 (a) A view from above of two tugboats pushing on a barge. (b) The free-body diagram for the ship contains only forces acting in the
plane of the water. It omits the two vertical forces—the weight of the barge and the buoyant force of the water supporting it cancel and are not

shown. Since the applied forces are perpendicular, the x- and y-axes are in the same direction as Fx and Fy . The problem quickly becomes a

one-dimensional problem along the direction of Fapp , since friction is in the direction opposite to Fapp o

If the mass of the barge is 5.0x 10° kg and its acceleration is observed to be 7.5X 1072 m/s? in the direction shown,

what is the drag force of the water on the barge resisting the motion? (Note: drag force is a frictional force exerted by fluids,
such as air or water. The drag force opposes the motion of the object.)

Strategy

The directions and magnitudes of acceleration and the applied forces are given in Figure 4.23(a). We will define the total
force of the tugboats on the barge as F,Jlpp so that:

Fopp=F.+F, (4.59)

Since the barge is flat bottomed, the drag of the water Fy will be in the direction opposite to Fapp , as shown in the free-

body diagram in Figure 4.23(b). The system of interest here is the barge, since the forces on it are given as well as its
acceleration. Our strategy is to find the magnitude and direction of the net applied force Fapp , and then apply Newton’s

second law to solve for the drag force Fpy.
Solution
Since F, and Fy are perpendicular, the magnitude and direction of Fapp are easily found. First, the resultant magnitude

is given by the Pythagorean theorem:

I == (4.60)
Fyp = |Fi+F;

12.7%10° N)2 + 3.6x10° N)> = 4.5x10° N.

F app

The angle is given by

F 4.61
0 = tan_l(F—y) “o
X
5
9 - tan—1(3.6x105N)=53o,
2.7%10° N

which we know, because of Newton’s first law, is the same direction as the acceleration. F, is in the opposite direction of
Fapp , since it acts to slow down the acceleration. Therefore, the net external force is in the same direction as Fapp , but its

magnitude is slightly less than Fapp . The problem is now one-dimensional. From Figure 4.23(b), we can see that

Fret = Fapp - Fp. (4.62)
But Newton'’s second law states that
F et = ma. (4.63)
Thus,
Fapp — Fp = ma. (4.64)
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This can be solved for the magnitude of the drag force of the water F'[y in terms of known quantities:

Fp= Fapp — ma. (4.65)
Substituting known values gives
Fp = (4.5%10° N) — (5.0x10% kg)(7.5% 1072 m/s%) = 7.5 10* N. B8
The direction of Fy has already been determined to be in the direction opposite to Fp, , or at an angle of 53° south of
west.
Discussion

The numbers used in this example are reasonable for a moderately large barge. It is certainly difficult to obtain larger
accelerations with tugboats, and small speeds are desirable to avoid running the barge into the docks. Drag is relatively
small for a well-designed hull at low speeds, consistent with the answer to this example, where F'py is less than 1/600th of

the weight of the ship.

In the earlier example of a tightrope walker we noted that the tensions in wires supporting a mass were equal only because the
angles on either side were equal. Consider the following example, where the angles are not equal; slightly more trigonometry is
involved.

Example 4.8 Different Tensions at Different Angles

Consider the traffic light (mass 15.0 kg) suspended from two wires as shown in Figure 4.24. Find the tension in each wire,
neglecting the masses of the wires.
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Figure 4.24 A traffic light is suspended from two wires. (b) Some of the forces involved. (c) Only forces acting on the system are shown here. The
free-body diagram for the traffic light is also shown. (d) The forces projected onto vertical (y) and horizontal (x) axes. The horizontal components

of the tensions must cancel, and the sum of the vertical components of the tensions
diagram shows the vertical and horizontal forces acting on the traffic light.

Strategy

must equal the weight of the traffic light. (e) The free-body

The system of interest is the traffic light, and its free-body diagram is shown in Figure 4.24(c). The three forces involved are
not parallel, and so they must be projected onto a coordinate system. The most convenient coordinate system has one axis
vertical and one horizontal, and the vector projections on it are shown in part (d) of the figure. There are two unknowns in
this problem (T and T, ), so two equations are needed to find them. These two equations come from applying Newton's

second law along the vertical and horizontal axes, noting that the net external force is zero along each axis because

acceleration is zero.
Solution
First consider the horizontal or x-axis:
Free =Tox— T

X

Thus, as you might expect,
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Tix="Tyy (4.68)
This gives us the following relationship between 7| and T’ :
T, cos (30°) = T, cos (45°). (4.69)
Thus,
T, = (1.225)T,. (4.70)
Note that 7 and T, are not equal in this case, because the angles on either side are not equal. It is reasonable that 7
ends up being greater than T, because it is exerted more vertically than T'; .
Now consider the force components along the vertical or y-axis:
Fnety = le + sz —-—Ww= 0. (471)
This implies
le + sz =w. (4.72)
Substituting the expressions for the vertical components gives
T sin (30°) + T, sin (45°) = w. (4.73)

There are two unknowns in this equation, but substituting the expression for T, in terms of 7' reduces this to one
equation with one unknown:

7,(0.500) + (1.22571)(0.707) = w = mg, (4.74)
which yields
(1.366)T; = (15.0 kg)(9.80 m/s?). (4.75)

Solving this last equation gives the magnitude of 7| to be

T, =108 N. (4.76)
Finally, the magnitude of T is determined using the relationship between them, T, =1.225 T, found above. Thus we
obtain

T, =132N. (4.77)
Discussion

Both tensions would be larger if both wires were more horizontal, and they will be equal if and only if the angles on either
side are the same (as they were in the earlier example of a tightrope walker).

The bathroom scale is an excellent example of a normal force acting on a body. It provides a quantitative reading of how much it
must push upward to support the weight of an object. But can you predict what you would see on the dial of a bathroom scale if
you stood on it during an elevator ride? Will you see a value greater than your weight when the elevator starts up? What about
when the elevator moves upward at a constant speed: will the scale still read more than your weight at rest? Consider the
following example.

Example 4.9 What Does the Bathroom Scale Read in an Elevator?

Figure 4.25 shows a 75.0-kg man (weight of about 165 Ib) standing on a bathroom scale in an elevator. Calculate the scale

reading: (a) if the elevator accelerates upward at a rate of 1.20 m/s? , and (b) if the elevator moves upward at a constant
speed of 1 m/s.
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Figure 4.25 (a) The various forces acting when a person stands on a bathroom scale in an elevator. The arrows are approximately correct for
when the elevator is accelerating upward—broken arrows represent forces too large to be drawn to scale. T is the tension in the supporting

cable, W is the weight of the person, Wy is the weight of the scale, W¢ is the weight of the elevator, Fs is the force of the scale on the
person, Fp is the force of the person on the scale, Ft is the force of the scale on the floor of the elevator, and N is the force of the floor
upward on the scale. (b) The free-body diagram shows only the external forces acting on the designated system of interest—the person.
Strategy

If the scale is accurate, its reading will equal Fp , the magnitude of the force the person exerts downward on it. Figure

4.25(a) shows the numerous forces acting on the elevator, scale, and person. It makes this one-dimensional problem look
much more formidable than if the person is chosen to be the system of interest and a free-body diagram is drawn as in
Figure 4.25(b). Analysis of the free-body diagram using Newton’s laws can produce answers to both parts (a) and (b) of this
example, as well as some other questions that might arise. The only forces acting on the person are his weight w and the

upward force of the scale F . According to Newton'’s third law Fp and Fg are equal in magnitude and opposite in

direction, so that we need to find F in order to find what the scale reads. We can do this, as usual, by applying Newton’s
second law,
F et = ma. (4.78)

From the free-body diagram we see that F ¢ = F'g — w, so that

Fy—w=ma. (4.79)
Solving for F'g gives an equation with only one unknown:

Fe=ma+w, (4.80)
or, because w = mg , simply

Fy=ma+ mg. (4.81)

No assumptions were made about the acceleration, and so this solution should be valid for a variety of accelerations in
addition to the ones in this exercise.

Solution for (a)
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In this part of the problem, a = 1.20 m/s2 , SO that

F = (75.0 kg)(1.20 m/s?) + (75.0 kg)(9.80 m/s?), (4.82)

yielding
Fy=825N. (4.83)

Discussion for (a)

This is about 185 Ib. What would the scale have read if he were stationary? Since his acceleration would be zero, the force
of the scale would be equal to his weight:

Frt = ma=0=Fg—w (4.84)
Fs = w=mg

Fy = (75.0kg)(9.80 m/s?)

Fy = 735N.

So, the scale reading in the elevator is greater than his 735-N (165 Ib) weight. This means that the scale is pushing up on
the person with a force greater than his weight, as it must in order to accelerate him upward. Clearly, the greater the
acceleration of the elevator, the greater the scale reading, consistent with what you feel in rapidly accelerating versus slowly
accelerating elevators.

Solution for (b)
Now, what happens when the elevator reaches a constant upward velocity? Will the scale still read more than his weight?

For any constant velocity—up, down, or stationary—acceleration is zero because a = % and Av=0.
Thus,
Fy=ma+mg =0+ mg. (4.85)
Now
Fy = (75.0 kg)(9.80 m/s?), (4.86)
which gives
Fy=735N. (4.87)

Discussion for (b)

The scale reading is 735 N, which equals the person’s weight. This will be the case whenever the elevator has a constant
velocity—moving up, moving down, or stationary.

The solution to the previous example also applies to an elevator accelerating downward, as mentioned. When an elevator
accelerates downward, a is negative, and the scale reading is less than the weight of the person, until a constant downward

velocity is reached, at which time the scale reading again becomes equal to the person’s weight. If the elevator is in free-fall and
accelerating downward at g, then the scale reading will be zero and the person will appear to be weightless.

Integrating Concepts: Newton’s Laws of Motion and Kinematics

Physics is most interesting and most powerful when applied to general situations that involve more than a narrow set of physical
principles. Newton’s laws of motion can also be integrated with other concepts that have been discussed previously in this text to
solve problems of motion. For example, forces produce accelerations, a topic of kinematics, and hence the relevance of earlier
chapters. When approaching problems that involve various types of forces, acceleration, velocity, and/or position, use the
following steps to approach the problem:

Problem-Solving Strategy

Step 1. Identify which physical principles are involved. Listing the givens and the quantities to be calculated will allow you to
identify the principles involved.

Step 2. Solve the problem using strategies outlined in the text. If these are available for the specific topic, you should refer to
them. You should also refer to the sections of the text that deal with a particular topic. The following worked example illustrates
how these strategies are applied to an integrated concept problem.

Example 4.10 What Force Must a Soccer Player Exert to Reach Top Speed?

A soccer player starts from rest and accelerates forward, reaching a velocity of 8.00 m/s in 2.50 s. (a) What was his average
acceleration? (b) What average force did he exert backward on the ground to achieve this acceleration? The player’'s mass
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is 70.0 kg, and air resistance is negligible.
Strategy

1. To solve an integrated concept problem, we must first identify the physical principles involved and identify the chapters
in which they are found. Part (a) of this example considers acceleration along a straight line. This is a topic of
kinematics. Part (b) deals with force, a topic of dynamics found in this chapter.

2. The following solutions to each part of the example illustrate how the specific problem-solving strategies are applied.
These involve identifying knowns and unknowns, checking to see if the answer is reasonable, and so forth.

Solution for (a)
We are given the initial and final velocities (zero and 8.00 m/s forward); thus, the change in velocity is Av = 8.00 m/s . We
are given the elapsed time, and so Ar = 2.50 s . The unknown is acceleration, which can be found from its definition:

7= % (4.88)
Substituting the known values yields
4 = 8.00m/s (4.89)
2.50s
= 3.20 m/s>.

Discussion for (a)
This is an attainable acceleration for an athlete in good condition.
Solution for (b)

Here we are asked to find the average force the player exerts backward to achieve this forward acceleration. Neglecting air
resistance, this would be equal in magnitude to the net external force on the player, since this force causes his acceleration.
Since we now know the player’s acceleration and are given his mass, we can use Newton'’s second law to find the force
exerted. That is,

F et = ma. (4.90)
Substituting the known values of m and a gives
Fpee = (70.0kg)(3.20 m/s?) (4.91)
224 N.

Discussion for (b)
This is about 50 pounds, a reasonable average force.

This worked example illustrates how to apply problem-solving strategies to situations that include topics from different
chapters. The first step is to identify the physical principles involved in the problem. The second step is to solve for the
unknown using familiar problem-solving strategies. These strategies are found throughout the text, and many worked
examples show how to use them for single topics. You will find these techniques for integrated concept problems useful in
applications of physics outside of a physics course, such as in your profession, in other science disciplines, and in everyday
life. The following problems will build your skills in the broad application of physical principles.

4.8 Extended Topic: The Four Basic Forces—An Introduction

Learning Objectives

By the end of this section, you will be able to:
» Understand the four basic forces that underlie the processes in nature.
The information presented in this section supports the following AP® learning objectives and science practices:

* 3.C.4.1 The student is able to make claims about various contact forces between objects based on the microscopic
cause of those forces. (S.P. 6.1)

« 3.C.4.2 The student is able to explain contact forces (tension, friction, normal, buoyant, spring) as arising from
interatomic electric forces and that they therefore have certain directions. (S.P. 6.2)

« 3.G.1.1 The student is able to articulate situations when the gravitational force is the dominant force and when the
electromagnetic, weak, and strong forces can be ignored. (S.P. 7.1)

One of the most remarkable simplifications in physics is that only four distinct forces account for all known phenomena. In fact,
nearly all of the forces we experience directly are due to only one basic force, called the electromagnetic force. (The gravitational
force is the only force we experience directly that is not electromagnetic.) This is a tremendous simplification of the myriad of
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apparently different forces we can list, only a few of which were discussed in the previous section. As we will see, the basic
forces are all thought to act through the exchange of microscopic carrier particles, and the characteristics of the basic forces are
determined by the types of particles exchanged. Action at a distance, such as the gravitational force of Earth on the Moon, is
explained by the existence of a force field rather than by “physical contact.”

The four basic forces are the gravitational force, the electromagnetic force, the weak nuclear force, and the strong nuclear force.
Their properties are summarized in Table 4.2. Since the weak and strong nuclear forces act over an extremely short range, the
size of a nucleus or less, we do not experience them directly, although they are crucial to the very structure of matter. These
forces determine which nuclei are stable and which decay, and they are the basis of the release of energy in certain nuclear
reactions. Nuclear forces determine not only the stability of nuclei, but also the relative abundance of elements in nature. The
properties of the nucleus of an atom determine the number of electrons it has and, thus, indirectly determine the chemistry of the
atom. More will be said of all of these topics in later chapters.

Concept Connections: The Four Basic Forces

The four basic forces will be encountered in more detail as you progress through the text. The gravitational force is defined
in Uniform Circular Motion and Gravitation, electric force in Electric Charge and Electric Field, magnetic force in
Magnetism, and nuclear forces in Radioactivity and Nuclear Physics. On a macroscopic scale, electromagnetism and
gravity are the basis for all forces. The nuclear forces are vital to the substructure of matter, but they are not directly
experienced on the macroscopic scale.

Table 4.2 Properties of the Four Basic Forcest!!

Gravitational 10738 o attractive only Graviton
Electromagnetic| 10 ~ 2 0 attractive and repulsive | Photon

Weak nuclear 1013 < 1078 m |attractive and repulsive |W7T, W, 70
Strong nuclear | 1 < 10_15m attractive and repulsive | gluons

The gravitational force is surprisingly weak—it is only because gravity is always attractive that we notice it at all. Our weight is
the gravitational force due to the entire Earth acting on us. On the very large scale, as in astronomical systems, the gravitational
force is the dominant force determining the motions of moons, planets, stars, and galaxies. The gravitational force also affects
the nature of space and time. As we shall see later in the study of general relativity, space is curved in the vicinity of very
massive bodies, such as the Sun, and time actually slows down near massive bodies.

Take a good look at the ranges for the four fundamental forces listed in Table 4.2. The range of the strong nuclear force, 10715
m, is approximately the size of the nucleus of an atom; the weak nuclear force has an even shorter range. At scales on the order
of 10-10 m, approximately the size of an atom, both nuclear forces are completely dominated by the electromagnetic force.
Notice that this scale is still utterly tiny compared to our everyday experience. At scales that we do experience daily,

electromagnetism tends to be negligible, due to its attractive and repulsive properties canceling each other out. That leaves

gravity, which is usually the strongest of the forces at scales above ~10"*m, and hence includes our everyday activities, such as
throwing, climbing stairs, and walking.

Electromagnetic forces can be either attractive or repulsive. They are long-range forces, which act over extremely large
distances, and they nearly cancel for macroscopic objects. (Remember that it is the net external force that is important.) If they
did not cancel, electromagnetic forces would completely overwhelm the gravitational force. The electromagnetic force is a
combination of electrical forces (such as those that cause static electricity) and magnetic forces (such as those that affect a
compass needle). These two forces were thought to be quite distinct until early in the 19th century, when scientists began to
discover that they are different manifestations of the same force. This discovery is a classical case of the unification of forces.
Similarly, friction, tension, and all of the other classes of forces we experience directly (except gravity, of course) are due to
electromagnetic interactions of atoms and molecules. It is still convenient to consider these forces separately in specific
applications, however, because of the ways they manifest themselves.

Concept Connections: Unifying Forces

Attempts to unify the four basic forces are discussed in relation to elementary particles later in this text. By “unify” we mean
finding connections between the forces that show that they are different manifestations of a single force. Even if such
unification is achieved, the forces will retain their separate characteristics on the macroscopic scale and may be identical
only under extreme conditions such as those existing in the early universe.

1. The graviton is a proposed particle, though it has not yet been observed by scientists. See the discussion of gravitational

waves later in this section. The particles wt , W™ ,and Z0 are called vector bosons; these were predicted by theory and first

observed in 1983. There are eight types of gluons proposed by scientists, and their existence is indicated by meson exchange in
the nuclei of atoms.
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Physicists are now exploring whether the four basic forces are in some way related. Attempts to unify all forces into one come
under the rubric of Grand Unified Theories (GUTSs), with which there has been some success in recent years. It is now known
that under conditions of extremely high density and temperature, such as existed in the early universe, the electromagnetic and
weak nuclear forces are indistinguishable. They can now be considered to be different manifestations of one force, called the
electroweak force. So the list of four has been reduced in a sense to only three. Further progress in unifying all forces is proving
difficult—especially the inclusion of the gravitational force, which has the special characteristics of affecting the space and time in
which the other forces exist.

While the unification of forces will not affect how we discuss forces in this text, it is fascinating that such underlying simplicity
exists in the face of the overt complexity of the universe. There is no reason that nature must be simple—it simply is.

Action at a Distance: Concept of a Field

All forces act at a distance. This is obvious for the gravitational force. Earth and the Moon, for example, interact without coming
into contact. It is also true for all other forces. Friction, for example, is an electromagnetic force between atoms that may not
actually touch. What is it that carries forces between objects? One way to answer this question is to imagine that a force field
surrounds whatever object creates the force. A second object (often called a test object) placed in this field will experience a
force that is a function of location and other variables. The field itself is the “thing” that carries the force from one object to
another. The field is defined so as to be a characteristic of the object creating it; the field does not depend on the test object
placed in it. Earth’s gravitational field, for example, is a function of the mass of Earth and the distance from its center,
independent of the presence of other masses. The concept of a field is useful because equations can be written for force fields
surrounding objects (for gravity, this yields w = mg at Earth’s surface), and motions can be calculated from these equations.

o

Figure 4.26 The electric force field between a positively charged particle and a negatively charged particle. When a positive test charge is placed in the
field, the charge will experience a force in the direction of the force field lines.

Concept Connections: Force Fields

The concept of a force field is also used in connection with electric charge and is presented in Electric Charge and Electric
Field. It is also a useful idea for all the basic forces, as will be seen in Particle Physics. Fields help us to visualize forces
and how they are transmitted, as well as to describe them with precision and to link forces with subatomic carrier particles.

Making Connections: Vector and Scalar Fields

These fields may be either scalar or vector fields. Gravity and electromagnetism are examples of vector fields. A test object
placed in such a field will have both the magnitude and direction of the resulting force on the test object completely defined
by the object’s location in the field. We will later cover examples of scalar fields, which have a magnitude but no direction.

The field concept has been applied very successfully; we can calculate motions and describe nature to high precision using field
equations. As useful as the field concept is, however, it leaves unanswered the question of what carries the force. It has been
proposed in recent decades, starting in 1935 with Hideki Yukawa’s (1907-1981) work on the strong nuclear force, that all forces
are transmitted by the exchange of elementary particles. We can visualize particle exchange as analogous to macroscopic
phenomena such as two people passing a basketball back and forth, thereby exerting a repulsive force without touching one
another. (See Figure 4.27.)
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Figure 4.27 The exchange of masses resulting in repulsive forces. (a) The person throwing the basketball exerts a force Fpl on it toward the other
person and feels a reaction force FB away from the second person. (b) The person catching the basketball exerts a force sz on it to stop the ball
and feels a reaction force F,B away from the first person. (c) The analogous exchange of a meson between a proton and a neutron carries the

’
h and F exc

basketball away from the first person as he tried to retain it, then the force between them would be attractive.

strong nuclear forces F h between them. An attractive force can also be exerted by the exchange of a mass—if person 2 pulled the

€XCl

This idea of particle exchange deepens rather than contradicts field concepts. It is more satisfying philosophically to think of
something physical actually moving between objects acting at a distance. Table 4.2 lists the exchange or carrier particles, both
observed and proposed, that carry the four forces. But the real fruit of the particle-exchange proposal is that searches for
Yukawa'’s proposed particle found it and a number of others that were completely unexpected, stimulating yet more research. All
of this research eventually led to the proposal of quarks as the underlying substructure of matter, which is a basic tenet of GUTs.
If successful, these theories will explain not only forces, but also the structure of matter itself. Yet physics is an experimental
science, so the test of these theories must lie in the domain of the real world. As of this writing, scientists at the CERN laboratory
in Switzerland are starting to test these theories using the world’s largest particle accelerator: the Large Hadron Collider. This
accelerator (27 km in circumference) allows two high-energy proton beams, traveling in opposite directions, to collide. An energy
of 14 trillion electron volts will be available. It is anticipated that some new particles, possibly force carrier particles, will be found.
(See Figure 4.28.) One of the force carriers of high interest that researchers hope to detect is the Higgs boson. The observation
of its properties might tell us why different particles have different masses.

diCars [N AN : peoaE | |

Figure 4.28 The world’s largest particle accelerator spans the border between Switzerland and France. Two beams, traveling in opposite directions
close to the speed of light, collide in a tube similar to the central tube shown here. External magnets determine the beam’s path. Special detectors will
analyze particles created in these collisions. Questions as broad as what is the origin of mass and what was matter like the first few seconds of our
universe will be explored. This accelerator began preliminary operation in 2008. (credit: Frank Hommes)
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Tiny particles also have wave-like behavior, something we will explore more in a later chapter. To better understand force-carrier
particles from another perspective, let us consider gravity. The search for gravitational waves has been going on for a number of
years. Almost 100 years ago, Einstein predicted the existence of these waves as part of his general theory of relativity.
Gravitational waves are created during the collision of massive stars, in black holes, or in supernova explosions—Ilike shock
waves. These gravitational waves will travel through space from such sites much like a pebble dropped into a pond sends out
ripples—except these waves move at the speed of light. A detector apparatus has been built in the U.S., consisting of two large
installations nearly 3000 km apart—one in Washington state and one in Louisiana! The facility is called the Laser Interferometer
Gravitational-Wave Observatory (LIGO). Each installation is designed to use optical lasers to examine any slight shift in the
relative positions of two masses due to the effect of gravity waves. The two sites allow simultaneous measurements of these
small effects to be separated from other natural phenomena, such as earthquakes. Initial operation of the detectors began in
2002, and work is proceeding on increasing their sensitivity. Similar installations have been built in Italy (VIRGO), Germany
(GEO600), and Japan (TAMA300) to provide a worldwide network of gravitational wave detectors.

International collaboration in this area is moving into space with the joint EU/US project LISA (Laser Interferometer Space
Antenna). Earthquakes and other Earthly noises will be no problem for these monitoring spacecraft. LISA will complement LIGO
by looking at much more massive black holes through the observation of gravitational-wave sources emitting much larger
wavelengths. Three satellites will be placed in space above Earth in an equilateral triangle (with 5,000,000-km sides) (Figure
4.29). The system will measure the relative positions of each satellite to detect passing gravitational waves. Accuracy to within
10% of the size of an atom will be needed to detect any waves. The launch of this project might be as early as 2018.

“I'm sure LIGO will tell us something about the universe that we didn’t know before. The history of science tells us that any time
you go where you haven't been before, you usually find something that really shakes the scientific paradigms of the day. Whether
gravitational wave astrophysics will do that, only time will tell.” —David Reitze, LIGO Input Optics Manager, University of Florida

Figure 4.29 Space-based future experiments for the measurement of gravitational waves. Shown here is a drawing of LISA's orbit. Each satellite of
LISA will consist of a laser source and a mass. The lasers will transmit a signal to measure the distance between each satellite’s test mass. The
relative motion of these masses will provide information about passing gravitational waves. (credit: NASA)

The ideas presented in this section are but a glimpse into topics of modern physics that will be covered in much greater depth in
later chapters.

Glossary
acceleration: the rate at which an object’s velocity changes over a period of time

carrier particle: a fundamental particle of nature that is surrounded by a characteristic force field; photons are carrier particles
of the electromagnetic force

dynamics: the study of how forces affect the motion of objects and systems
external force: a force acting on an object or system that originates outside of the object or system

force: a push or pull on an object with a specific magnitude and direction; can be represented by vectors; can be expressed
as a multiple of a standard force

force field: a region in which a test particle will experience a force

free-body diagram: a sketch showing all of the external forces acting on an object or system; the system is represented by a
dot, and the forces are represented by vectors extending outward from the dot

free-fall: a situation in which the only force acting on an object is the force due to gravity
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friction: a force past each other of objects that are touching; examples include rough surfaces and air resistance
inertia: the tendency of an object to remain at rest or remain in motion

inertial frame of reference: a coordinate system that is not accelerating; all forces acting in an inertial frame of reference are
real forces, as opposed to fictitious forces that are observed due to an accelerating frame of reference

law of inertia: see Newton’s first law of motion
mass: the quantity of matter in a substance; measured in kilograms
net external force: the vector sum of all external forces acting on an object or system; causes a mass to accelerate

Newton'’s first law of motion: in an inertial frame of reference, a body at rest remains at rest, or, if in motion, remains in
motion at a constant velocity unless acted on by a net external force; also known as the law of inertia

Newton’s second law of motion: the net external force F o, on an object with mass m is proportional to and in the same

direction as the acceleration of the object, a, and inversely proportional to the mass; defined mathematically as

a= Fnet
m

Newton’s third law of motion: whenever one body exerts a force on a second body, the first body experiences a force that is
equal in magnitude and opposite in direction to the force that the first body exerts

normal force: the force that a surface applies to an object to support the weight of the object; acts perpendicular to the
surface on which the object rests

system: defined by the boundaries of an object or collection of objects being observed; all forces originating from outside of
the system are considered external forces

tension: the pulling force that acts along a medium, especially a stretched flexible connector, such as a rope or cable; when a
rope supports the weight of an object, the force on the object due to the rope is called a tension force

thrust: a reaction force that pushes a body forward in response to a backward force; rockets, airplanes, and cars are pushed
forward by a thrust reaction force

weight: the force W due to gravity acting on an object of mass m ; defined mathematically as: w = mg , where g is the
magnitude and direction of the acceleration due to gravity

Section Summary

4.1 Development of Force Concept
« Dynamics is the study of how forces affect the motion of objects.
« Force is a push or pull that can be defined in terms of various standards, and it is a vector having both magnitude and
direction.
« External forces are any outside forces that act on a body. A free-body diagram is a drawing of all external forces acting
on a body.

4.2 Newton's First Law of Motion: Inertia
* Newton'’s first law of motion states that in an inertial frame of reference a body at rest remains at rest, or, if in motion,
remains in motion at a constant velocity unless acted on by a net external force. This is also known as the law of inertia.
« Inertia is the tendency of an object to remain at rest or remain in motion. Inertia is related to an object’'s mass.
* Mass is the quantity of matter in a substance.

4.3 Newton's Second Law of Motion: Concept of a System
« Acceleration, a, is defined as a change in velocity, meaning a change in its magnitude or direction, or both.

« An external force is one acting on a system from outside the system, as opposed to internal forces, which act between
components within the system.

« Newton’s second law of motion states that the acceleration of a system is directly proportional to and in the same direction
as the net external force acting on the system, and inversely proportional to its mass.

« In equation form, Newton’s second law of motion is a = #et.
* This is often written in the more familiar form: F o, = ma.

« The weight w of an object is defined as the force of gravity acting on an object of mass m . The object experiences an
acceleration due to gravity g:
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W = mg.
If the only force acting on an object is due to gravity, the object is in free fall.
Friction is a force that opposes the motion past each other of objects that are touching.

4.4 Newton's Third Law of Motion: Symmetry in Forces

.

Newton’s third law of motion represents a basic symmetry in nature. It states: Whenever one body exerts a force on a
second body, the first body experiences a force that is equal in magnitude and opposite in direction to the force that the first
body exerts.

A thrust is a reaction force that pushes a body forward in response to a backward force. Rockets, airplanes, and cars are
pushed forward by a thrust reaction force.

4.5 Normal, Tension, and Other Examples of Force

When objects rest on a surface, the surface applies a force to the object that supports the weight of the object. This
supporting force acts perpendicular to and away from the surface. It is called a normal force, N .
When objects rest on a non-accelerating horizontal surface, the magnitude of the normal force is equal to the weight of the
object:

N = mg.
When objects rest on an inclined plane that makes an angle @ with the horizontal surface, the weight of the object can be
resolved into components that act perpendicular (W ) and parallel (W I ) to the surface of the plane. These

components can be calculated using:
W =w sin (#) = mg sin (0)
w,; = wcos (d) = mg cos (6).

The pulling force that acts along a stretched flexible connector, such as a rope or cable, is called tension, T . When a rope
supports the weight of an object that is at rest, the tension in the rope is equal to the weight of the object:

T = mg.
In any inertial frame of reference (one that is not accelerated or rotated), Newton’s laws have the simple forms given in this
chapter and all forces are real forces having a physical origin.

4.6 Problem-Solving Strategies

To solve problems involving Newton'’s laws of motion, follow the procedure described:

1. Draw a sketch of the problem.

2. ldentify known and unknown quantities, and identify the system of interest. Draw a free-body diagram, which is a
sketch showing all of the forces acting on an object. The object is represented by a dot, and the forces are
represented by vectors extending in different directions from the dot. If vectors act in directions that are not horizontal
or vertical, resolve the vectors into horizontal and vertical components and draw them on the free-body diagram.

3. Write Newton'’s second law in the horizontal and vertical directions and add the forces acting on the object. If the
object does not accelerate in a particular direction (for example, the x -direction) then F; , = 0. If the object does

accelerate in that direction, F e, = ma .

4. Check your answer. Is the answer reasonable? Are the units correct?

4.7 Further Applications of Newton's Laws of Motion

.

Newton’s laws of motion can be applied in numerous situations to solve problems of motion.

Some problems will contain multiple force vectors acting in different directions on an object. Be sure to draw diagrams,
resolve all force vectors into horizontal and vertical components, and draw a free-body diagram. Always analyze the
direction in which an object accelerates so that you can determine whether Fo = ma or Fpe =0 .

The normal force on an object is not always equal in magnitude to the weight of the object. If an object is accelerating, the
normal force will be less than or greater than the weight of the object. Also, if the object is on an inclined plane, the normal
force will always be less than the full weight of the object.

Some problems will contain various physical quantities, such as forces, acceleration, velocity, or position. You can apply
concepts from kinematics and dynamics in order to solve these problems of motion.

4.8 Extended Topic: The Four Basic Forces—An Introduction

The various types of forces that are categorized for use in many applications are all manifestations of the four basic forces
in nature.

The properties of these forces are summarized in Table 4.2.

Everything we experience directly without sensitive instruments is due to either electromagnetic forces or gravitational
forces. The nuclear forces are responsible for the submicroscopic structure of matter, but they are not directly sensed
because of their short ranges. Attempts are being made to show all four forces are different manifestations of a single
unified force.
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« A force field surrounds an object creating a force and is the carrier of that force.

Conceptual Questions

4.1 Development of Force Concept

1. Propose a force standard different from the example of a stretched spring discussed in the text. Your standard must be
capable of producing the same force repeatedly.

2. What properties do forces have that allow us to classify them as vectors?

4.2 Newton's First Law of Motion: Inertia
3. How are inertia and mass related?

4. What is the relationship between weight and mass? Which is an intrinsic, unchanging property of a body?

4.3 Newton's Second Law of Motion: Concept of a System

5. Which statement is correct? (a) Net force causes motion. (b) Net force causes change in motion. Explain your answer and
give an example.

6. Why can we neglect forces such as those holding a body together when we apply Newton’s second law of motion?

7. Explain how the choice of the “system of interest” affects which forces must be considered when applying Newton'’s second
law of motion.

8. Describe a situation in which the net external force on a system is not zero, yet its speed remains constant.
9. A system can have a nonzero velocity while the net external force on it is zero. Describe such a situation.
10. A rock is thrown straight up. What is the net external force acting on the rock when it is at the top of its trajectory?

11. (a) Give an example of different net external forces acting on the same system to produce different accelerations. (b) Give an
example of the same net external force acting on systems of different masses, producing different accelerations. (c) What law
accurately describes both effects? State it in words and as an equation.

12. If the acceleration of a system is zero, are no external forces acting on it? What about internal forces? Explain your answers.
13. If a constant, nonzero force is applied to an object, what can you say about the velocity and acceleration of the object?

14. The gravitational force on the basketball in Figure 4.6 is ignored. When gravity is taken into account, what is the direction of
the net external force on the basketball—above horizontal, below horizontal, or still horizontal?

4.4 Newton's Third Law of Motion: Symmetry in Forces

15. When you take off in a jet aircraft, there is a sensation of being pushed back into the seat. Explain why you move backward
in the seat—is there really a force backward on you? (The same reasoning explains whiplash injuries, in which the head is
apparently thrown backward.)

16. A device used since the 1940s to measure the kick or recoil of the body due to heart beats is the “ballistocardiograph.” What
physics principle(s) are involved here to measure the force of cardiac contraction? How might we construct such a device?

17. Describe a situation in which one system exerts a force on another and, as a consequence, experiences a force that is equal
in magnitude and opposite in direction. Which of Newton’s laws of motion apply?

18. Why does an ordinary rifle recoil (kick backward) when fired? The barrel of a recoilless rifle is open at both ends. Describe
how Newton'’s third law applies when one is fired. Can you safely stand close behind one when it is fired?

19. An American football lineman reasons that it is senseless to try to out-push the opposing player, since no matter how hard he
pushes he will experience an equal and opposite force from the other player. Use Newton'’s laws and draw a free-body diagram
of an appropriate system to explain how he can still out-push the opposition if he is strong enough.

20. Newton’s third law of motion tells us that forces always occur in pairs of equal and opposite magnitude. Explain how the
choice of the “system of interest” affects whether one such pair of forces cancels.
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4.5 Normal, Tension, and Other Examples of Force

21. If a leg is suspended by a traction setup as shown in Figure 4.30, what is the tension in the rope?
J
T

w
leg

Figure 4.30 A leg is suspended by a traction system in which wires are used to transmit forces. Frictionless pulleys change the direction of the force T
without changing its magnitude.

22. In a traction setup for a broken bone, with pulleys and rope available, how might we be able to increase the force along the
tibia using the same weight? (See Figure 4.30.) (Note that the tibia is the shin bone shown in this image.)

4.7 Further Applications of Newton's Laws of Motion

23. To simulate the apparent weightlessness of space orbit, astronauts are trained in the hold of a cargo aircraft that is
accelerating downward at g . Why will they appear to be weightless, as measured by standing on a bathroom scale, in this

accelerated frame of reference? Is there any difference between their apparent weightlessness in orbit and in the aircraft?

24. A cartoon shows the toupee coming off the head of an elevator passenger when the elevator rapidly stops during an upward
ride. Can this really happen without the person being tied to the floor of the elevator? Explain your answer.

4.8 Extended Topic: The Four Basic Forces—An Introduction

25. Explain, in terms of the properties of the four basic forces, why people notice the gravitational force acting on their bodies if it
is such a comparatively weak force.

26. What is the dominant force between astronomical objects? Why are the other three basic forces less significant over these
very large distances?

27. Give a detailed example of how the exchange of a particle can result in an attractive force. (For example, consider one child
pulling a toy out of the hands of another.)
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Problems & Exercises

4.3 Newton's Second Law of Motion: Concept
of a System

You may assume data taken from illustrations is accurate
to three digits.

1. A 63.0-kg sprinter starts a race with an acceleration of
4.20 m/s® . What is the net external force on him?

2. If the sprinter from the previous problem accelerates at that
rate for 20 m, and then maintains that velocity for the
remainder of the 100-m dash, what will be his time for the
race?

3. A cleaner pushes a 4.50-kg laundry cart in such a way that
the net external force on it is 60.0 N. Calculate the magnitude
of its acceleration.

4. Since astronauts in orbit are apparently weightless, a
clever method of measuring their masses is needed to
monitor their mass gains or losses to adjust diets. One way to
do this is to exert a known force on an astronaut and measure
the acceleration produced. Suppose a net external force of
50.0 N is exerted and the astronaut’s acceleration is

measured to be 0.893 m/s>. (a) Calculate her mass. (b) By

exerting a force on the astronaut, the vehicle in which they
orbit experiences an equal and opposite force. Discuss how
this would affect the measurement of the astronaut’s
acceleration. Propose a method in which recoil of the vehicle
is avoided.

5. In Figure 4.7, the net external force on the 24-kg mower is
stated to be 51 N. If the force of friction opposing the motion
is 24 N, what force F' (in newtons) is the person exerting on
the mower? Suppose the mower is moving at 1.5 m/s when
the force F' is removed. How far will the mower go before
stopping?

6. The same rocket sled drawn in Figure 4.31 is decelerated
atarate of 196 m/s2. What force is necessary to produce

this deceleration? Assume that the rockets are off. The mass
of the system is 2100 kg.
—

Figure 4.31

7. (a) If the rocket sled shown in Figure 4.32 starts with only
one rocket burning, what is the magnitude of its acceleration?
Assume that the mass of the system is 2100 kg, the thrust T
is 2.4x10% N, and the force of friction opposing the motion

is known to be 650 N. (b) Why is the acceleration not one-
fourth of what it is with all rockets burning?
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Figure 4.32

8. What is the deceleration of the rocket sled if it comes to
restin 1.1 s from a speed of 1000 km/h? (Such deceleration
caused one test subject to black out and have temporary
blindness.)

9. Suppose two children push horizontally, but in exactly
opposite directions, on a third child in a wagon. The first child
exerts a force of 75.0 N, the second a force of 90.0 N, friction
is 12.0 N, and the mass of the third child plus wagon is 23.0
kg. (a) What is the system of interest if the acceleration of the
child in the wagon is to be calculated? (b) Draw a free-body
diagram, including all forces acting on the system. (c)
Calculate the acceleration. (d) What would the acceleration
be if friction were 15.0 N?

10. A powerful motorcycle can produce an acceleration of

3.50 m/s? while traveling at 90.0 km/h. At that speed the

forces resisting motion, including friction and air resistance,
total 400 N. (Air resistance is analogous to air friction. It
always opposes the motion of an object.) What is the
magnitude of the force the motorcycle exerts backward on the
ground to produce its acceleration if the mass of the
motorcycle with rider is 245 kg?

11. The rocket sled shown in Figure 4.33 accelerates at a

rate of 49.0 m/s2 . Its passenger has a mass of 75.0 kg. (a)

Calculate the horizontal component of the force the seat
exerts against his body. Compare this with his weight by
using a ratio. (b) Calculate the direction and magnitude of the
total force the seat exerts against his body.

N

Figure 4.33

12. Repeat the previous problem for the situation in which the

rocket sled decelerates at a rate of 201 m/s2 . In this

problem, the forces are exerted by the seat and restraining
belts.

13. The weight of an astronaut plus his space suit on the
Moon is only 250 N. How much do they weigh on Earth?
What is the mass on the Moon? On Earth?

14. Suppose the mass of a fully loaded module in which
astronauts take off from the Moon is 10,000 kg. The thrust of
its engines is 30,000 N. (a) Calculate its the magnitude of
acceleration in a vertical takeoff from the Moon. (b) Could it lift
off from Earth? If not, why not? If it could, calculate the
magnitude of its acceleration.

4.4 Newton's Third Law of Motion: Symmetry in
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Forces

15. What net external force is exerted on a 1100-kg artillery
shell fired from a battleship if the shell is accelerated at

2.40x10* m/s? 2 What is the magnitude of the force
exerted on the ship by the artillery shell?

16. A brave but inadequate rugby player is being pushed
backward by an opposing player who is exerting a force of
800 N on him. The mass of the losing player plus equipment

is 90.0 kg, and he is accelerating at 1.20 m/s? backward.

(a) What is the force of friction between the losing player’s
feet and the grass? (b) What force does the winning player
exert on the ground to move forward if his mass plus
equipment is 110 kg? (c) Draw a sketch of the situation
showing the system of interest used to solve each part. For
this situation, draw a free-body diagram and write the net
force equation.

4.5 Normal, Tension, and Other Examples of
Force

17. Two teams of nine members each engage in a tug of war.
Each of the first team’s members has an average mass of 68
kg and exerts an average force of 1350 N horizontally. Each
of the second team’s members has an average mass of 73 kg
and exerts an average force of 1365 N horizontally. (a) What
is magnitude of the acceleration of the two teams? (b) What is
the tension in the section of rope between the teams?

18. What force does a trampoline have to apply to a 45.0-kg

gymnast to accelerate her straight up at 7.50 m/s? 2 Note
that the answer is independent of the velocity of the
gymnast—she can be moving either up or down, or be
stationary.

19. (a) Calculate the tension in a vertical strand of spider web
if a spider of mass 8.00x107° kg hangs motionless on it.

(b) Calculate the tension in a horizontal strand of spider web if
the same spider sits motionless in the middle of it much like
the tightrope walker in Figure 4.17. The strand sags at an
angle of 12° below the horizontal. Compare this with the

tension in the vertical strand (find their ratio).

20. Suppose a 60.0-kg gymnast climbs a rope. (a) What is the
tension in the rope if he climbs at a constant speed? (b) What
is the tension in the rope if he accelerates upward at a rate of

1.50 m/s2 2

21. Show that, as stated in the text, a force F| exerted on

a flexible medium at its center and perpendicular to its length
(such as on the tightrope wire in Figure 4.17) gives rise to a
tension of magnitude T Fy
i itu = .
9 2 sin (0)
22. Consider the baby being weighed in Figure 4.34. (a)
What is the mass of the child and basket if a scale reading of
55 N is observed? (b) What is the tension 7' in the cord

attaching the baby to the scale? (c) What is the tension 7' in

the cord attaching the scale to the ceiling, if the scale has a
mass of 0.500 kg? (d) Draw a sketch of the situation
indicating the system of interest used to solve each part. The
masses of the cords are negligible.

Chapter 4 | Dynamics: Force and Newton's Laws of Motion

T2
Y
A
T2
i
== 0
Z 3 50
v —100
& —150
£ —200
© —250
Z —300
B'
TI
Ji
&, //
w

Figure 4.34 A baby is weighed using a spring scale.

4.6 Problem-Solving Strategies
23. A 5.00X105-kg rocket is accelerating straight up. Its

engines produce 1.250x107 N of thrust, and air resistance

is 4.50x10° N . What is the rocket's acceleration? Explicitly

show how you follow the steps in the Problem-Solving
Strategy for Newton’s laws of motion.

24. The wheels of a midsize car exert a force of 2100 N
backward on the road to accelerate the car in the forward
direction. If the force of friction including air resistance is 250

N and the acceleration of the car is 1.80 m/s2 , what is the

mass of the car plus its occupants? Explicitly show how you
follow the steps in the Problem-Solving Strategy for Newton’s
laws of motion. For this situation, draw a free-body diagram
and write the net force equation.

25. Calculate the force a 70.0-kg high jumper must exert on
the ground to produce an upward acceleration 4.00 times the
acceleration due to gravity. Explicitly show how you follow the
steps in the Problem-Solving Strategy for Newton'’s laws of
motion.

26. When landing after a spectacular somersault, a 40.0-kg
gymnast decelerates by pushing straight down on the mat.
Calculate the force she must exert if her deceleration is 7.00
times the acceleration due to gravity. Explicitly show how you
follow the steps in the Problem-Solving Strategy for Newton’'s
laws of motion.
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27. A freight train consists of two 8.00% 10* -kg engines

and 45 cars with average masses of 5.50x 10* kg . (a)
What force must each engine exert backward on the track to
accelerate the train at a rate of 5.00x 1072 m/s? if the force

of friction is 7.50x10° N, assuming the engines exert
identical forces? This is not a large frictional force for such a
massive system. Rolling friction for trains is small, and
consequently trains are very energy-efficient transportation
systems. (b) What is the force in the coupling between the
37th and 38th cars (this is the force each exerts on the other),
assuming all cars have the same mass and that friction is
evenly distributed among all of the cars and engines?

28. Commercial airplanes are sometimes pushed out of the
passenger loading area by a tractor. (a) An 1800-kg tractor
exerts a force of 1.75%10* N backward on the pavement,
and the system experiences forces resisting motion that total
2400 N. If the acceleration is 0.150 m/s?, what is the mass

of the airplane? (b) Calculate the force exerted by the tractor
on the airplane, assuming 2200 N of the friction is
experienced by the airplane. (c) Draw two sketches showing
the systems of interest used to solve each part, including the
free-body diagrams for each.

29. A 1100-kg car pulls a boat on a trailer. (a) What total force
resists the motion of the car, boat, and trailer, if the car exerts
a 1900-N force on the road and produces an acceleration of

0.550 m/s ? The mass of the boat plus trailer is 700 kg. (b)

What is the force in the hitch between the car and the trailer if
80% of the resisting forces are experienced by the boat and
trailer?

30. (a) Find the magnitudes of the forces F{ and F, that
add to give the total force F,; shown in Figure 4.35. This

may be done either graphically or by using trigonometry. (b)
Show graphically that the same total force is obtained
independent of the order of addition of F{ and F, . (c) Find

the direction and magnitude of some other pair of vectors that
add to give F . Draw these to scale on the same drawing

used in part (b) or a similar picture.

Fie =20 N

F, Free-body diagram

Y
[ ]
-n\

F, 1
Figure 4.35

31. Two children pull a third child on a snow saucer sled
exerting forces F; and F, as shown from above in Figure

4.36. Find the acceleration of the 49.00-kg sled and child
system. Note that the direction of the frictional force is
unspecified; it will be in the opposite direction of the sum of
Fl and F2
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Figure 4.36 An overhead view of the horizontal forces acting on a child’s
snow saucer sled.

f

—-—

32. Suppose your car was mired deeply in the mud and you
wanted to use the method illustrated in Figure 4.37 to pull it
out. (a) What force would you have to exert perpendicular to
the center of the rope to produce a force of 12,000 N on the
car if the angle is 2.00°? In this part, explicitly show how you
follow the steps in the Problem-Solving Strategy for Newton’s
laws of motion. (b) Real ropes stretch under such forces.
What force would be exerted on the car if the angle increases
to 7.00° and you still apply the force found in part (a) to its
center?

Figure 4.37

33. What force is exerted on the tooth in Figure 4.38 if the
tension in the wire is 25.0 N? Note that the force applied to
the tooth is smaller than the tension in the wire, but this is
necessitated by practical considerations of how force can be
applied in the mouth. Explicitly show how you follow steps in
the Problem-Solving Strategy for Newton'’s laws of motion.

Figure 4.38 Braces are used to apply forces to teeth to realign them.
Shown in this figure are the tensions applied by the wire to the

protruding tooth. The total force applied to the tooth by the wire, Fapp ,

points straight toward the back of the mouth.
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34. Figure 4.39 shows Superhero and Trusty Sidekick 37. Construct Your Own Problem Consider two people
hanging motionless from a rope. Superhero’s mass is 90.0 pushing a toboggan with four children on it up a snow-

kg, while Trusty Sidekick’s is 55.0 kg, and the mass of the covered slope. Construct a problem in which you calculate
rope is negligible. (a) Draw a free-body diagram of the the acceleration of the toboggan and its load. Include a free-
situation showing all forces acting on Superhero, Trusty body diagram of the appropriate system of interest as the
Sidekick, and the rope. (b) Find the tension in the rope above basis for your analysis. Show vector forces and their
Superhero. (c) Find the tension in the rope between components and explain the choice of coordinates. Among
Superhero and Trusty Sidekick. Indicate on your free-body the things to be considered are the forces exerted by those
diagram the system of interest used to solve each part. pushing, the angle of the slope, and the masses of the

Iﬂgjgll toboggan and children.
38. Unreasonable Results (a) Repeat Exercise 4.29, but

assume an acceleration of 1.20 m/s? is produced. (b) What
is unreasonable about the result? (c) Which premise is
unreasonable, and why is it unreasonable?

39. Unreasonable Results (a) What is the initial acceleration

of a rocket that has a mass of 1.50x10° kg at takeoff, the

engines of which produce a thrust of 2.00x 10° N 2 Do not

neglect gravity. (b) What is unreasonable about the result?
(This result has been unintentionally achieved by several real
rockets.) (c) Which premise is unreasonable, or which
premises are inconsistent? (You may find it useful to compare
this problem to the rocket problem earlier in this section.)

4.7 Further Applications of Newton's Laws of
Motion

40. A flea jumps by exerting a force of 1.20X 107> N
straight down on the ground. A breeze blowing on the flea

parallel to the ground exerts a force of 0.500x 107N on
the flea. Find the direction and magnitude of the acceleration

of the flea if its mass is 6.00x 1077 kg . Do not neglect the
gravitational force.

-

41. Two muscles in the back of the leg pull upward on the
Achilles tendon, as shown in Figure 4.40. (These muscles
are called the medial and lateral heads of the gastrocnemius
muscle.) Find the magnitude and direction of the total force
{ on the Achilles tendon. What type of movement could be
caused by this force?
Figure 4.39 Superhero and Trusty Sidekick hang motionless on a rope F2{200 N) F1 (200 N)

as they try to figure out what to do next. Will the tension be the same
everywhere in the rope?

35. A nurse pushes a cart by exerting a force on the handle at
a downward angle 35.0° below the horizontal. The loaded
cart has a mass of 28.0 kg, and the force of friction is 60.0 N.
(a) Draw a free-body diagram for the system of interest. (b)
What force must the nurse exert to move at a constant
velocity?

36. Construct Your Own Problem Consider the tension in
an elevator cable during the time the elevator starts from rest
and accelerates its load upward to some cruising velocity. 1]
Taking the elevator and its load to be the system of interest, Ll
draw a free-body diagram. Then calculate the tension in the

cable. Among the things to consider are the mass of the |
elevator and its load, the final velocity, and the time taken to [
reach that velocity.

Figure 4.40 Achilles tendon

This OpenStax book is available for free at http://cnx.org/content/col11844/1.14



Chapter 4 | Dynamics: Force and Newton's Laws of Motion

42. A 76.0-kg person is being pulled away from a burning
building as shown in Figure 4.41. Calculate the tension in the
two ropes if the person is momentarily motionless. Include a
free-body diagram in your solution.

L

i

—
S

Figure 4.41 The force T2 needed to hold steady the person being

rescued from the fire is less than her weight and less than the force
Tl in the other rope, since the more vertical rope supports a greater

part of her weight (a vertical force).

43. Integrated Concepts A 35.0-kg dolphin decelerates from
12.0 to 7.50 m/s in 2.30 s to join another dolphin in play. What
average force was exerted to slow him if he was moving
horizontally? (The gravitational force is balanced by the
buoyant force of the water.)

44. Integrated Concepts When starting a foot race, a
70.0-kg sprinter exerts an average force of 650 N backward
on the ground for 0.800 s. (a) What is his final speed? (b)
How far does he travel?

45. Integrated Concepts A large rocket has a mass of

2.00x10° kg at takeoff, and its engines produce a thrust of

3.50x10" N . (a) Find its initial acceleration if it takes off

vertically. (b) How long does it take to reach a velocity of 120
km/h straight up, assuming constant mass and thrust? (c) In
reality, the mass of a rocket decreases significantly as its fuel
is consumed. Describe qualitatively how this affects the
acceleration and time for this motion.

46. Integrated Concepts A basketball player jumps straight
up for a ball. To do this, he lowers his body 0.300 m and then
accelerates through this distance by forcefully straightening
his legs. This player leaves the floor with a vertical velocity
sufficient to carry him 0.900 m above the floor. (a) Calculate
his velocity when he leaves the floor. (b) Calculate his
acceleration while he is straightening his legs. He goes from
zero to the velocity found in part (a) in a distance of 0.300 m.
(c) Calculate the force he exerts on the floor to do this, given
that his mass is 110 kg.
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47. Integrated Concepts A 2.50-kg fireworks shell is fired
straight up from a mortar and reaches a height of 110 m. (a)
Neglecting air resistance (a poor assumption, but we will
make it for this example), calculate the shell’s velocity when it
leaves the mortar. (b) The mortar itself is a tube 0.450 m long.
Calculate the average acceleration of the shell in the tube as
it goes from zero to the velocity found in (a). (c) What is the
average force on the shell in the mortar? Express your
answer in newtons and as a ratio to the weight of the shell.

48. Integrated Concepts Repeat Exercise 4.47 for a shell
fired at an angle 10.0° from the vertical.

49. Integrated Concepts An elevator filled with passengers
has a mass of 1700 kg. (a) The elevator accelerates upward

from rest at a rate of 1.20 m/s2 for 1.50 s. Calculate the

tension in the cable supporting the elevator. (b) The elevator
continues upward at constant velocity for 8.50 s. What is the
tension in the cable during this time? (c) The elevator

decelerates at a rate of 0.600 m/s2 for 3.00 s. What is the

tension in the cable during deceleration? (d) How high has
the elevator moved above its original starting point, and what
is its final velocity?

50. Unreasonable Results (a) What is the final velocity of a
car originally traveling at 50.0 km/h that decelerates at a rate

of 0.400 m/s2 for 50.0 s? (b) What is unreasonable about

the result? (c) Which premise is unreasonable, or which
premises are inconsistent?

51. Unreasonable Results A 75.0-kg man stands on a
bathroom scale in an elevator that accelerates from rest to
30.0 m/s in 2.00 s. (a) Calculate the scale reading in newtons
and compare it with his weight. (The scale exerts an upward
force on him equal to its reading.) (b) What is unreasonable
about the result? (c) Which premise is unreasonable, or which
premises are inconsistent?

4.8 Extended Topic: The Four Basic
Forces—An Introduction

52. (a) What is the strength of the weak nuclear force relative
to the strong nuclear force? (b) What is the strength of the
weak nuclear force relative to the electromagnetic force?
Since the weak nuclear force acts at only very short
distances, such as inside nuclei, where the strong and
electromagnetic forces also act, it might seem surprising that
we have any knowledge of it at all. We have such knowledge
because the weak nuclear force is responsible for beta decay,
a type of nuclear decay not explained by other forces.

53. (a) What is the ratio of the strength of the gravitational
force to that of the strong nuclear force? (b) What is the ratio
of the strength of the gravitational force to that of the weak
nuclear force? (c) What is the ratio of the strength of the
gravitational force to that of the electromagnetic force? What
do your answers imply about the influence of the gravitational
force on atomic nuclei?

54. What is the ratio of the strength of the strong nuclear
force to that of the electromagnetic force? Based on this ratio,
you might expect that the strong force dominates the nucleus,
which is true for small nuclei. Large nuclei, however, have
sizes greater than the range of the strong nuclear force. At
these sizes, the electromagnetic force begins to affect nuclear
stability. These facts will be used to explain nuclear fusion
and fission later in this text.
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Test Prep for AP® Courses

4.1 Development of Force Concept
1.

- d

+ L

Direction of
Car’s Motion

Figure 4.42 The figure above represents a racetrack with
semicircular sections connected by straight sections. Each
section has length d, and markers along the track are spaced
d/4 apart. Two people drive cars counterclockwise around the
track, as shown. Car X goes around the curves at constant
speed vc, increases speed at constant acceleration for half of
each straight section to reach a maximum speed of 2vc, then
brakes at constant acceleration for the other half of each
straight section to return to speed vc. Car Y also goes around
the curves at constant speed vc, increases its speed at
constant acceleration for one-fourth of each straight section to
reach the same maximum speed 2vc, stays at that speed for
half of each straight section, then brakes at constant
acceleration for the remaining fourth of each straight section
to return to speed vc.

(a) On the figures below, draw an arrow showing the direction
of the net force on each of the cars at the positions noted by
the dots. If the net force is zero at any position, label the dot
with 0.
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Figure 4.43

The position of the six dots on the Car Y track on the right are
as follows:

The first dot on the left center of the track is at the same
position as it is on the Car X track.

The second dot is just slight to the right of the Car X dot (less
than a dash) past three perpendicular hash marks moving to
the right.

The third dot is about one and two-thirds perpendicular hash
marks to the right of the center top perpendicular has mark.
The fourth dot is in the same position as the Car X figure
(one perpendicular hash mark above the center right
perpendicular hash mark).

The fifth dot is about one and two-third perpendicular hash
marks to the right of the center bottom perpendicular hash
mark.

The sixth dot is in the same position as the Car Y dot (one
and two third perpendicular hash marks to the left of the
center bottom hash mark).

(b)
i. Indicate which car, if either, completes one trip around the

track in less time, and justify your answer qualitatively without
using equations.
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ii. Justify your answer about which car, if either, completes
one trip around the track in less time quantitatively with
appropriate equations.

2. Which of the following is an example of a body exerting a
force on itself?

a. aperson standing up from a seated position

b. a car accelerating while driving

c. both of the above

d. none of the above

3. A hawk accelerates as it glides in the air. Does the force
causing the acceleration come from the hawk itself? Explain.

4, What causes the force that moves a boat forward when
someone rows it?
a. The force is caused by the rower’s arms.
b. The force is caused by an interaction between the oars
and gravity.
c. The force is caused by an interaction between the oars
and the water the boat is traveling in.
d. The force is caused by friction.

4.4 Newton's Third Law of Motion: Symmetry in
Forces

5. What object or objects commonly exert forces on the
following objects in motion? (a) a soccer ball being kicked, (b)
a dolphin jumping, (c) a parachutist drifting to Earth.

6. A ball with a mass of 0.25 kg hits a gym ceiling with a force
of 78.0 N. What happens next?
a. The ball accelerates downward with a force of 80.5 N.
b. The ball accelerates downward with a force of 78.0 N.
c. The ball accelerates downward with a force of 2.45 N.
d. It depends on the height of the ceiling.

7. Which of the following is true?

a. Earth exerts a force due to gravity on your body, and
your body exerts a smaller force on the Earth, because
your mass is smaller than the mass of the Earth.

b. The Moon orbits the Earth because the Earth exerts a
force on the Moon and the Moon exerts a force equal in
magnitude and direction on the Earth.

c. Arocket taking off exerts a force on the Earth equal to
the force the Earth exerts on the rocket.

d. An airplane cruising at a constant speed is not affected
by gravity.

8. Stationary skater A pushes stationary skater B, who then

accelerates at 5.0 m/s2. Skater A does not move. Since
forces act in action-reaction pairs, explain why Skater A did
not move?

9. The current in a river exerts a force of 9.0 N on a balloon
floating in the river. A wind exerts a force of 13.0 N on the
balloon in the opposite direction. Draw a free-body diagram to
show the forces acting on the balloon. Use your free-body
diagram to predict the effect on the balloon.

10. A force is applied to accelerate an object on a smooth icy
surface. When the force stops, which of the following will be
true? (Assume zero friction.)

a. The object’s acceleration becomes zero.

b. The object’s speed becomes zero.

c. The object’s acceleration continues to increase at a

constant rate.
d. The object accelerates, but in the opposite direction.

11. A parachutist’s fall to Earth is determined by two opposing
forces. A gravitational force of 539 N acts on the parachutist.
After 2 s, she opens her parachute and experiences an air
resistance of 615 N. At what speed is the parachutist falling
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after 10 s?

12. A flight attendant pushes a cart down the aisle of a plane
in flight. In determining the acceleration of the cart relative to
the plane, which factor do you not need to consider?

a. The friction of the cart’s wheels.

b. The force with which the flight attendant’s feet push on

the floor.
c. The velocity of the plane.
d. The mass of the items in the cart.

13. A landscaper is easing a wheelbarrow full of soil down a
hill. Define the system you would analyze and list all the
forces that you would need to include to calculate the
acceleration of the wheelbarrow.

14. Two water-skiers, with masses of 48 kg and 61 kg, are
preparing to be towed behind the same boat. When the boat
accelerates, the rope the skiers hold onto accelerates with it
and exerts a net force of 290 N on the skiers. At what rate will
the skiers accelerate?

a. 10.8 m/s?

b. 2.7 mis?

c. 6.0 m/s?and 4.8 m/s?
d. 53m/s?

15. A figure skater has a mass of 40 kg and her partner's
mass is 50 kg. She pushes against the ice with a force of 120
N, causing her and her partner to move forward. Calculate the
pair's acceleration. Assume that all forces opposing the
motion, such as friction and air resistance, total 5.0 N.

4.5 Normal, Tension, and Other Examples of
Force
16. An archer shoots an arrow straight up with a force of 24.5

N. The arrow has a mass of 0.4 kg. What is the force of
gravity on the arrow?

a. 9.8 mis?
b. 98N
c. 61.25N
d. 39N

17. A cable raises a mass of 120.0 kg with an acceleration of
1.3 m/s2. What force of tension is in the cable?

18. A child pulls a wagon along a grassy field. Define the
system, the pairs of forces at work, and the results.

19. Two teams are engaging in a tug—of-war. The rope
suddenly snaps. Which statement is true about the forces
involved?

a. The forces exerted by the two teams are no longer
equal; the teams will accelerate in opposite directions as
a result.

b. The forces exerted by the players are no longer
balanced by the force of tension in the rope; the teams
will accelerate in opposite directions as a result.

c. The force of gravity balances the forces exerted by the
players; the teams will fall as a result

d. The force of tension in the rope is transferred to the
players; the teams will accelerate in opposite directions
as a result.

20. The following free-body diagram represents a toboggan
on a hill. What acceleration would you expect, and why?
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Figure 4.44

a. Acceleration down the hill; the force due to being
pushed, together with the downhill component of gravity,
overcomes the opposing force of friction.

b. Acceleration down the hill; friction is less than the
opposing component of force due to gravity.

c. No movement; friction is greater than the force due to
being pushed.

d. It depends on how strong the force due to friction is. p

21. Draw a free-body diagram to represent the forces acting
on a kite on a string that is floating stationary in the air. Label
the forces in your diagram.

22. A car is sliding down a hill with a slope of 20°. The mass
of the car is 965 kg. When a cable is used to pull the car up
the slope, a force of 4215 N is applied. What is the car’s
acceleration, ignoring friction?

4.6 Problem-Solving Strategies

23. A toboggan with two riders has a total mass of 85.0 kg. A
third person is pushing the toboggan with a force of 42.5 N at
the top of a hill with an angle of 15°. The force of friction on
the toboggan is 31.0 N. Which statement describes an
accurate free-body diagram to represent the situation?
a. An arrow of magnitude 10.5 N points down the slope of
the hill.
b. An arrow of magnitude 833 N points straight down.
c. An arrow of magnitude 833 N points perpendicular to
the slope of the hill.
d. An arrow of magnitude 73.5 N points down the slope of
the hill.

24. A mass of 2.0 kg is suspended from the ceiling of an
elevator by a rope. What is the tension in the rope when the

elevator (i) accelerates upward at 1.5 m/s2? (i) accelerates

downward at 1.5 m/s?
a. (i)22.6N; (i) 16.6 N
b. Because the mass is hanging from the elevator itself,
the tension in the rope will not change in either case.
c. (i) 22.6 N; (i) 19.6 N
d. (i) 16.6 N; (ii) 19.6 N

25. Which statement is true about drawing free-body
diagrams?
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a. Drawing a free-body diagram should be the last step in
solving a problem about forces.

b. Drawing a free-body diagram helps you compare forces
quantitatively.

c. The forces in a free-body diagram should always
balance.

d. Drawing a free-body diagram can help you determine
the net force.

4.7 Further Applications of Newton's Laws of
Motion
26. A basketball player jumps as he shoots the ball. Describe

the forces that are acting on the ball and on the basketball
player. What are the results?

27. Two people push on a boulder to try to move it. The mass
of the boulder is 825 kg. One person pushes north with a
force of 64 N. The other pushes west with a force of 38 N.
Predict the magnitude of the acceleration of the boulder.
Assume that friction is negligible.

28.
40 N
A

40N

Figure 4.45 The figure shows the forces exerted on a block that
is sliding on a horizontal surface: the gravitational force of 40
N, the 40 N normal force exerted by the surface, and a
frictional force exerted to the left. The coefficient of friction
between the block and the surface is 0.20. The acceleration
of the block is most nearly

a. 1.0 m/s? to the right
b. 1.0 m/s? to the left
c. 2.0m/s?tothe right
d. 2.0 m/s? to the left

4.8 Extended Topic: The Four Basic
Forces—An Introduction

29. Which phenomenon correctly describes the direction and
magnitude of normal forces?

a. electromagnetic attraction

b. electromagnetic repulsion

c. gravitational attraction

d. gravitational repulsion

30. Explain which of the four fundamental forces is

Chapter 4 | Dynamics: Force and Newton's Laws of Motion

responsible for a ball bouncing off the ground after it hits, and
why this force has this effect.

31. Which of the basic forces best explains tension in a rope
being pulled between two people? Is the acting force causing
attraction or repulsion in this instance?

a. gravity; attraction

b. electromagnetic; attraction

c. weak and strong nuclear; attraction

d. weak and strong nuclear; repulsion

32. Explain how interatomic electric forces produce the
normal force, and why it has the direction it does.

33. The gravitational force is the weakest of the four basic
forces. In which case can the electromagnetic, strong, and
weak forces be ignored because the gravitational force is so
strongly dominant?

a. aperson jumping on a trampoline

b. arocket blasting off from Earth

c. alog rolling down a hill

d. all of the above

34. Describe a situation in which gravitational force is the
dominant force. Why can the other three basic forces be
ignored in the situation you described?
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Figure 5.1 Total hip replacement surgery has become a common procedure. The head (or ball) of the patient's femur fits into a cup that has a hard
plastic-like inner lining. (credit: National Institutes of Health, via Wikimedia Commons)

Chapter Outline

5.1. Friction

5.2. Drag Forces
5.3. Elasticity: Stress and Strain

Connection for AP® Courses

Have you ever wondered why it is difficult to walk on a smooth surface like ice? The interaction between you and the surface is a
result of forces that affect your motion. In the previous chapter, you learned Newton's laws of motion and examined how net force
affects the motion, position and shape of an object. Now we will look at some interesting and common forces that will provide
further applications of Newton's laws of motion.

The information presented in this chapter supports learning objectives covered under Big Idea 3 of the AP Physics Curriculum
Framework, which refer to the nature of forces and their roles in interactions among objects. The chapter discusses examples of
specific contact forces, such as friction, air or liquid drag, and elasticity that may affect the motion or shape of an object. It also
discusses the nature of forces on both macroscopic and microscopic levels (Enduring Understanding 3.C and Essential
Knowledge 3.C.4). In addition, Newton's laws are applied to describe the motion of an object (Enduring Understanding 3.B) and
to examine relationships between contact forces and other forces exerted on an object (Enduring Understanding 3.A, 3.A.3 and
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Essential Knowledge 3.A.4). The examples in this chapter give you practice in using vector properties of forces (Essential
Knowledge 3.A.2) and free-body diagrams (Essential Knowledge 3.B.2) to determine net force (Essential Knowledge 3.B.1).

Big Idea 3 The interactions of an object with other objects can be described by forces.

Enduring Understanding 3.A All forces share certain common characteristics when considered by observers in inertial reference
frames.

Essential Knowledge 3.A.2 Forces are described by vectors.
Essential Knowledge 3.A.3 A force exerted on an object is always due to the interaction of that object with another object.

Essential Knowledge 3.A.4 If one object exerts a force on a second object, the second object always exerts a force of equal
magnitude on the first object in the opposite direction.

Enduring Understanding 3.B Classically, the acceleration of an object interacting with other objects can be predicted by using
-
2 L F
4 =""m
Essential Knowledge 3.B.1 If an object of interest interacts with several other objects, the net force is the vector sum of the
individual forces.

Essential Knowledge 3.B.2 Free-body diagrams are useful tools for visualizing forces being exerted on a single object and writing
the equations that represent a physical situation.

Enduring Understanding 3.C At the macroscopic level, forces can be categorized as either long-range (action-at-a-distance)
forces or contact forces.

Essential Knowledge 3.C.4 Contact forces result from the interaction of one object touching another object, and they arise from
interatomic electric forces. These forces include tension, friction, normal, spring (Physics 1), and buoyant (Physics 2).

5.1 Friction

Learning Objectives

By the end of this section, you will be able to:

» Discuss the general characteristics of friction.
» Describe the various types of friction.
» Calculate the magnitudes of static and kinetic frictional forces.

The information presented in this section supports the following AP® learning objectives and science practices:

« 3.C.4.1 The student is able to make claims about various contact forces between objects based on the microscopic
cause of those forces. (S.P. 6.1)

« 3.C.4.2 The student is able to explain contact forces (tension, friction, normal, buoyant, spring) as arising from
interatomic electric forces and that they therefore have certain directions. (S.P. 6.2)

Friction is a force that is around us all the time that opposes relative motion between systems in contact but also allows us to
move (which you have discovered if you have ever tried to walk on ice). While a common force, the behavior of friction is actually
very complicated and is still not completely understood. We have to rely heavily on observations for whatever understandings we
can gain. However, we can still deal with its more elementary general characteristics and understand the circumstances in which
it behaves.

Friction

Friction is a force that opposes relative motion between systems in contact.

One of the simpler characteristics of friction is that it is parallel to the contact surface between systems and always in a direction
that opposes motion or attempted motion of the systems relative to each other. If two systems are in contact and moving relative
to one another, then the friction between them is called kinetic friction. For example, friction slows a hockey puck sliding on ice.
But when objects are stationary, static friction can act between them; the static friction is usually greater than the kinetic friction
between the objects.

Kinetic Friction

If two systems are in contact and moving relative to one another, then the friction between them is called kinetic friction.

Imagine, for example, trying to slide a heavy crate across a concrete floor—you may push harder and harder on the crate and
not move it at all. This means that the static friction responds to what you do—it increases to be equal to and in the opposite
direction of your push. But if you finally push hard enough, the crate seems to slip suddenly and starts to move. Once in motion it
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is easier to keep it in motion than it was to get it started, indicating that the kinetic friction force is less than the static friction
force. If you add mass to the crate, say by placing a box on top of it, you need to push even harder to get it started and also to
keep it moving. Furthermore, if you oiled the concrete you would find it to be easier to get the crate started and keep it going (as
you might expect).

Figure 5.2 is a crude pictorial representation of how friction occurs at the interface between two objects. Close-up inspection of
these surfaces shows them to be rough. So when you push to get an object moving (in this case, a crate), you must raise the
object until it can skip along with just the tips of the surface hitting, break off the points, or do both. A considerable force can be
resisted by friction with no apparent motion. The harder the surfaces are pushed together (such as if another box is placed on
the crate), the more force is needed to move them. Part of the friction is due to adhesive forces between the surface molecules
of the two objects, which explain the dependence of friction on the nature of the substances. Adhesion varies with substances in
contact and is a complicated aspect of surface physics. Once an object is moving, there are fewer points of contact (fewer
molecules adhering), so less force is required to keep the object moving. At small but nonzero speeds, friction is nearly
independent of speed.

Direction of motion
or attempted motion

Figure 5.2 Frictional forces, such as f , always oppose motion or attempted motion between objects in contact. Friction arises in part because of the

roughness of the surfaces in contact, as seen in the expanded view. In order for the object to move, it must rise to where the peaks can skip along the
bottom surface. Thus a force is required just to set the object in motion. Some of the peaks will be broken off, also requiring a force to maintain motion.
Much of the friction is actually due to attractive forces between molecules making up the two objects, so that even perfectly smooth surfaces are not
friction-free. Such adhesive forces also depend on the substances the surfaces are made of, explaining, for example, why rubber-soled shoes slip less
than those with leather soles.

The magnitude of the frictional force has two forms: one for static situations (static friction), the other for when there is motion
(kinetic friction).

When there is no motion between the objects, the magnitude of static friction fg is
Js S usN, (5.1)

where ug is the coefficient of static friction and N is the magnitude of the normal force (the force perpendicular to the surface).

Magnitude of Static Friction

Magnitude of static friction fs is
fs S usN, (5.2)

where g is the coefficient of static friction and N is the magnitude of the normal force.

The symbol < means less than or equal to, implying that static friction can have a minimum and a maximum value of ugN .

Static friction is a responsive force that increases to be equal and opposite to whatever force is exerted, up to its maximum limit.
Once the applied force exceeds [y, » the object will move. Thus

fs(max) = usN. (5.3)
Once an object is moving, the magnitude of kinetic friction f} is given by
Ji = 1, (5.4)

where uy is the coefficient of kinetic friction. A system in which fi = u N is described as a system in which friction behaves

simply.

Magnitude of Kinetic Friction

The magnitude of kinetic friction f} is given by
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where . is the coefficient of kinetic friction.
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Sk = u,

(5.5)

As seen in Table 5.1, the coefficients of kinetic friction are less than their static counterparts. That values of u in Table 5.1 are

stated to only one or, at most, two digits is an indication of the approximate description of friction given by the above two

equations.

Table 5.1 Coefficients of Static and Kinetic Friction

Hs Hx
Rubber on dry concrete 1.0 0.7
Rubber on wet concrete 0.7 0.5
Wood on wood 0.5 0.3
Waxed wood on wet snow 0.14 0.1
Metal on wood 0.5 0.3
Steel on steel (dry) 0.6 0.3
Steel on steel (oiled) 0.05 0.03
Teflon on steel 0.04 0.04
Bone lubricated by synovial fluid 0.016 0.015
Shoes on wood 0.9 0.7
Shoes on ice 0.1 0.05
Ice onice 0.1 0.03
Steel on ice 0.04 0.02

The equations given earlier include the dependence of friction on materials and the normal force. The direction of friction is
always opposite that of motion, parallel to the surface between objects, and perpendicular to the normal force. For example, if
the crate you try to push (with a force parallel to the floor) has a mass of 100 kg, then the normal force would be equal to its

weight, W = mg = (100 kg)(9.80 m/sz) =980 N, perpendicular to the floor. If the coefficient of static friction is 0.45, you

would have to exert a force parallel to the floor greater than fs(max) = ugN = (0.45)(980 N) = 440 N to move the crate.

Once there is motion, friction is less and the coefficient of kinetic friction might be 0.30, so that a force of only 290 N (

Jx = N = (0.30)(980 N) = 290 N) would keep it moving at a constant speed. If the floor is lubricated, both coefficients

are considerably less than they would be without lubrication. Coefficient of friction is a unit less quantity with a magnitude usually

between 0 and 1.0. The coefficient of the friction depends on the two surfaces that are in contact.

Take-Home Experiment

Find a small plastic object (such as a food container) and slide it on a kitchen table by giving it a gentle tap. Now spray water
on the table, simulating a light shower of rain. What happens now when you give the object the same-sized tap? Now add a

few drops of (vegetable or olive) oil on the surface of the water and give the same tap. What happens now? This latter

situation is particularly important for drivers to note, especially after a light rain shower. Why?

Many people have experienced the slipperiness of walking on ice. However, many parts of the body, especially the joints, have

much smaller coefficients of friction—often three or four times less than ice. A joint is formed by the ends of two bones, which are
connected by thick tissues. The knee joint is formed by the lower leg bone (the tibia) and the thighbone (the femur). The hip is a
ball (at the end of the femur) and socket (part of the pelvis) joint. The ends of the bones in the joint are covered by cartilage,
which provides a smooth, almost glassy surface. The joints also produce a fluid (synovial fluid) that reduces friction and wear. A
damaged or arthritic joint can be replaced by an artificial joint (Figure 5.3). These replacements can be made of metals
(stainless steel or titanium) or plastic (polyethylene), also with very small coefficients of friction.
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Figure 5.3 Artificial knee replacement is a procedure that has been performed for more than 20 years. In this figure, we see the post-op x rays of the
right knee joint replacement. (credit: Mike Baird, Flickr)

Other natural lubricants include saliva produced in our mouths to aid in the swallowing process, and the slippery mucus found
between organs in the body, allowing them to move freely past each other during heartbeats, during breathing, and when a
person moves. Artificial lubricants are also common in hospitals and doctor's clinics. For example, when ultrasonic imaging is
carried out, the gel that couples the transducer to the skin also serves to to lubricate the surface between the transducer and the
skin—thereby reducing the coefficient of friction between the two surfaces. This allows the transducer to mover freely over the
skin.

Example 5.1 Skiing Exercise

A skier with a mass of 62 kg is sliding down a snowy slope. Find the coefficient of kinetic friction for the skier if friction is
known to be 45.0 N.

Strategy
The magnitude of kinetic friction was given in to be 45.0 N. Kinetic friction is related to the normal force N as f; = u N ;

thus, the coefficient of kinetic friction can be found if we can find the normal force of the skier on a slope. The normal force is
always perpendicular to the surface, and since there is no motion perpendicular to the surface, the normal force should
equal the component of the skier's weight perpendicular to the slope. (See the skier and free-body diagram in Figure 5.4.)
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Free-body diagram

P

» w
= ,

Figure 5.4 The motion of the skier and friction are parallel to the slope and so it is most convenient to project all forces onto a coordinate system
where one axis is parallel to the slope and the other is perpendicular (axes shown to left of skier). N (the normal force) is perpendicular to the

slope, and f (the friction) is parallel to the slope, but W (the skier's weight) has components along both axes, namely W | and W// . Nis

equal in magnitude to W , so there is no motion perpendicular to the slope. However, f is less than W// in magnitude, so there is

acceleration down the slope (along the x-axis).
That is,
N=w, =wcos25° =mg cos25°. (5.6)
Substituting this into our expression for kinetic friction, we get
Jfx = Myng cos25°, (5.7)
which can now be solved for the coefficient of kinetic friction py .

Solution
Solving for uy gives

Y Sx (5.8)
:uk_N_ =

wcos25°  mgcos25°.

Substituting known values on the right-hand side of the equation,

(62 kg)(9.80 m/s2)(0.906)

Hy

Discussion

This result is a little smaller than the coefficient listed in Table 5.1 for waxed wood on snow, but it is still reasonable since
values of the coefficients of friction can vary greatly. In situations like this, where an object of mass m slides down a slope

that makes an angle @ with the horizontal, friction is given by f, = u;mgcos@ . All objects will slide down a slope with

constant acceleration under these circumstances. Proof of this is left for this chapter's Problems and Exercises.

Take-Home Experiment

An object will slide down an inclined plane at a constant velocity if the net force on the object is zero. We can use this fact to
measure the coefficient of kinetic friction between two objects. As shown in Example 5.1, the kinetic friction on a slope
Jx = mmg cos @ . The component of the weight down the slope is equal to mg sin@ (see the free-body diagram in

Figure 5.4). These forces act in opposite directions, so when they have equal magnitude, the acceleration is zero. Writing
these out:

Jfx=Fgx (5.10)
Uy mg cos 6 = mg sin 6. (5.11)
Solving for uy , we find that
__mgsinf _ (5.12)
M= ngcosg — A0 0.

Put a coin on a book and tilt it until the coin slides at a constant velocity down the book. You might need to tap the book
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lightly to get the coin to move. Measure the angle of tilt relative to the horizontal and find ;. . Note that the coin will not start

to slide at all until an angle greater than @ is attained, since the coefficient of static friction is larger than the coefficient of
kinetic friction. Discuss how this may affect the value for w; and its uncertainty.

We have discussed that when an object rests on a horizontal surface, there is a normal force supporting it equal in magnitude to
its weight. Furthermore, simple friction is always proportional to the normal force.

Making Connections: Submicroscopic Explanations of Friction

The simpler aspects of friction dealt with so far are its macroscopic (large-scale) characteristics. Great strides have been
made in the atomic-scale explanation of friction during the past several decades. Researchers are finding that the atomic
nature of friction seems to have several fundamental characteristics. These characteristics not only explain some of the
simpler aspects of friction—they also hold the potential for the development of nearly friction-free environments that could
save hundreds of billions of dollars in energy which is currently being converted (unnecessarily) to heat.

Figure 5.5 illustrates one macroscopic characteristic of friction that is explained by microscopic (small-scale) research. We have
noted that friction is proportional to the normal force, but not to the area in contact, a somewhat counterintuitive notion. When two
rough surfaces are in contact, the actual contact area is a tiny fraction of the total area since only high spots touch. When a
greater normal force is exerted, the actual contact area increases, and it is found that the friction is proportional to this area.

N
L,-\,_,_\/‘_/\_,__/ Small normal

T al force

M Large normal

force

| N
Figure 5.5 Two rough surfaces in contact have a much smaller area of actual contact than their total area. When there is a greater normal force as a
result of a greater applied force, the area of actual contact increases as does friction.

But the atomic-scale view promises to explain far more than the simpler features of friction. The mechanism for how heat is
generated is now being determined. In other words, why do surfaces get warmer when rubbed? Essentially, atoms are linked
with one another to form lattices. When surfaces rub, the surface atoms adhere and cause atomic lattices to vibrate—essentially
creating sound waves that penetrate the material. The sound waves diminish with distance and their energy is converted into
heat. Chemical reactions that are related to frictional wear can also occur between atoms and molecules on the surfaces. Figure
5.6 shows how the tip of a probe drawn across another material is deformed by atomic-scale friction. The force needed to drag
the tip can be measured and is found to be related to shear stress, which will be discussed later in this chapter. The variation in

shear stress is remarkable (more than a factor of 10'2 ) and difficult to predict theoretically, but shear stress is yielding a
fundamental understanding of a large-scale phenomenon known since ancient times—friction.
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Figure 5.6 The tip of a probe is deformed sideways by frictional force as the probe is dragged across a surface. Measurements of how the force varies
for different materials are yielding fundamental insights into the atomic nature of friction.

PhET Explorations: Forces and Motion

Explore the forces at work when you try to push a filing cabinet. Create an applied force and see the resulting friction force
and total force acting on the cabinet. Charts show the forces, position, velocity, and acceleration vs. time. Draw a free-body
diagram of all the forces (including gravitational and normal forces).

PhET Interactive Simulation

Figure 5.7 Forces and Motion (http://cnx.org/content/m54899/1.3/forces-and-motion_en.jar)

5.2 Drag Forces

Learning Objectives

By the end of this section, you will be able to:

Define drag force and model it mathematically.
Discuss the applications of drag force.

Define terminal velocity.

Perform calculations to find terminal velocity.

Another interesting force in everyday life is the force of drag on an object when it is moving in a fluid (either a gas or a liquid).
You feel the drag force when you move your hand through water. You might also feel it if you move your hand during a strong
wind. The faster you move your hand, the harder it is to move. You feel a smaller drag force when you tilt your hand so only the
side goes through the air—you have decreased the area of your hand that faces the direction of motion. Like friction, the drag
force always opposes the motion of an object. Unlike simple friction, the drag force is proportional to some function of the
velocity of the object in that fluid. This functionality is complicated and depends upon the shape of the object, its size, its velocity,
and the fluid it is in. For most large objects such as bicyclists, cars, and baseballs not moving too slowly, the magnitude of the
drag force Fy is found to be proportional to the square of the speed of the object. We can write this relationship mathematically

as Fp o v2 . When taking into account other factors, this relationship becomes
Fr=Llcpan?, (5.13)
D 2 p

where C is the drag coefficient, A is the area of the object facing the fluid, and p is the density of the fluid. (Recall that density

is mass per unit volume.) This equation can also be written in a more generalized fashion as F = bv? , where b is a constant

equivalentto 0.5CpA . We have set the exponent for these equations as 2 because, when an object is moving at high velocity
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through air, the magnitude of the drag force is proportional to the square of the speed. As we shall see in a few pages on fluid
dynamics, for small particles moving at low speeds in a fluid, the exponent is equal to 1.

Drag Force

Drag force F[y is found to be proportional to the square of the speed of the object. Mathematically
Fp 2 (5.14)
Fp= %Cpsz, (5.15)

where C is the drag coefficient, A is the area of the object facing the fluid, and p is the density of the fluid.

Athletes as well as car designers seek to reduce the drag force to lower their race times. (See Figure 5.8). “Aerodynamic”
shaping of an automobile can reduce the drag force and so increase a car's gas mileage.

Figure 5.8 From racing cars to bobsled racers, aerodynamic shaping is crucial to achieving top speeds. Bobsleds are designed for speed. They are
shaped like a bullet with tapered fins. (credit: U.S. Army, via Wikimedia Commons)

The value of the drag coefficient, C , is determined empirically, usually with the use of a wind tunnel. (See Figure 5.9).

Figure 5.9 NASA researchers test a model plane in a wind tunnel. (credit: NASA/Ames)

The drag coefficient can depend upon velocity, but we will assume that it is a constant here. Table 5.2 lists some typical drag
coefficients for a variety of objects. Notice that the drag coefficient is a dimensionless quantity. At highway speeds, over 50% of
the power of a car is used to overcome air drag. The most fuel-efficient cruising speed is about 70—80 km/h (about 45-50 mi/h).
For this reason, during the 1970s oil crisis in the United States, maximum speeds on highways were set at about 90 km/h (55 mi/
h).
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Table 5.2 Drag Coefficient
Values Typical values of
drag coefficient C .

Airfoil 0.05
Toyota Camry 0.28
Ford Focus 0.32
Honda Civic 0.36

Ferrari Testarossa (0.37

Dodge Ram pickup ]0.43
Sphere 0.45
Hummer H2 SUV 0.64
Skydiver (feet first) [0.70
Bicycle 0.90
Skydiver (horizontal) [ 1.0

Circular flat plate 1.12

Substantial research is under way in the sporting world to minimize drag. The dimples on golf balls are being redesigned as are
the clothes that athletes wear. Bicycle racers and some swimmers and runners wear full bodysuits. Australian Cathy Freeman
wore a full body suit in the 2000 Sydney Olympics, and won the gold medal for the 400 m race. Many swimmers in the 2008
Beijing Olympics wore (Speedo) body suits; it might have made a difference in breaking many world records (See Figure 5.10).
Most elite swimmers (and cyclists) shave their body hair. Such innovations can have the effect of slicing away milliseconds in a
race, sometimes making the difference between a gold and a silver medal. One consequence is that careful and precise
guidelines must be continuously developed to maintain the integrity of the sport.

Figure 5.10 Body suits, such as this LZR Racer Suit, have been credited with many world records after their release in 2008. Smoother “skin” and
more compression forces on a swimmer's body provide at least 10% less drag. (credit: NASA/Kathy Barnstorff)

Some interesting situations connected to Newton's second law occur when considering the effects of drag forces upon a moving
object. For instance, consider a skydiver falling through air under the influence of gravity. The two forces acting on him are the
force of gravity and the drag force (ignoring the buoyant force). The downward force of gravity remains constant regardless of the
velocity at which the person is moving. However, as the person's velocity increases, the magnitude of the drag force increases
until the magnitude of the drag force is equal to the gravitational force, thus producing a net force of zero. A zero net force means
that there is no acceleration, as given by Newton's second law. At this point, the person's velocity remains constant and we say
that the person has reached his terminal velocity (v ). Since F[y is proportional to the speed, a heavier skydiver must go faster

for F'p to equal his weight. Let's see how this works out more quantitatively.

At the terminal velocity,
Foo=mg—Fp=ma=0. (5.16)

Thus,
mg = Fp. (6.17)

Using the equation for drag force, we have
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mg = %pCsz. (5.18)

_\[2mg (5.19)
V= CA”

Assume the density of airis p = 1.21 kg/m3 . A 75-kg skydiver descending head first will have an area approximately

Solving for the velocity, we obtain

A=0.18m? anda drag coefficient of approximately C = 0.70 . We find that

2(75 kg)(9.80 m/s?) (5.20)

V.= / 3 2
(1.21 kg/m)(0.70)(0.18 m?)
= 98 m/s
= 350 km/h.

This means a skydiver with a mass of 75 kg achieves a maximum terminal velocity of about 350 km/h while traveling in a pike
(head first) position, minimizing the area and his drag. In a spread-eagle position, that terminal velocity may decrease to about
200 km/h as the area increases. This terminal velocity becomes much smaller after the parachute opens.

Take-Home Experiment

This interesting activity examines the effect of weight upon terminal velocity. Gather together some nested coffee filters.
Leaving them in their original shape, measure the time it takes for one, two, three, four, and five nested filters to fall to the
floor from the same height (roughly 2 m). (Note that, due to the way the filters are nested, drag is constant and only mass
varies.) They obtain terminal velocity quite quickly, so find this velocity as a function of mass. Plot the terminal velocity v

versus mass. Also plot v2 versus mass. Which of these relationships is more linear? What can you conclude from these
graphs?

Example 5.2 A Terminal Velocity

Find the terminal velocity of an 85-kg skydiver falling in a spread-eagle position.
Strategy
At terminal velocity, Fe; = 0. Thus the drag force on the skydiver must equal the force of gravity (the person's weight).

Using the equation of drag force, we find mg = %pCsz .

b= 2mg (5.21)
t— \pcA

All quantities are known except the person's projected area. This is an adult (85 kg) falling spread eagle. We can estimate
the frontal area as

Thus the terminal velocity v can be written as

Solution

A = (2m)(0.35m) =0.70 m>. (5.22)

Using our equation for v, we find that

(5.23)

V¢ =

[ 2(85 kg)(9.80 m/s?)
\/(1.21 kg/m>)(1.0)(0.70 m?)
44 m/s.

Discussion
This result is consistent with the value for v, mentioned earlier. The 75-kg skydiver going feet firsthad a v =98 m/s. He

weighed less but had a smaller frontal area and so a smaller drag due to the air.

The size of the object that is falling through air presents another interesting application of air drag. If you fall from a 5-m high
branch of a tree, you will likely get hurt—possibly fracturing a bone. However, a small squirrel does this all the time, without
getting hurt. You don't reach a terminal velocity in such a short distance, but the squirrel does.
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The following interesting quote on animal size and terminal velocity is from a 1928 essay by a British biologist, J.B.S. Haldane,
titled “On Being the Right Size.”

To the mouse and any smaller animal, [gravity] presents practically no dangers. You can drop a mouse down a thousand-yard
mine shaft; and, on arriving at the bottom, it gets a slight shock and walks away, provided that the ground is fairly soft. A rat is
killed, a man is broken, and a horse splashes. For the resistance presented to movement by the air is proportional to the surface
of the moving object. Divide an animal's length, breadth, and height each by ten; its weight is reduced to a thousandth, but its
surface only to a hundredth. So the resistance to falling in the case of the small animal is relatively ten times greater than the
driving force.

The above quadratic dependence of air drag upon velocity does not hold if the object is very small, is going very slow, oris in a

denser medium than air. Then we find that the drag force is proportional just to the velocity. This relationship is given by Stokes'
law, which states that

Fy = 6z, (5.24)

where r is the radius of the object, # is the viscosity of the fluid, and v is the object's velocity.

Stokes' Law
Fq = 6mrmy, (5.25)

where r is the radius of the object, # is the viscosity of the fluid, and v is the object's velocity.

Good examples of this law are provided by microorganisms, pollen, and dust particles. Because each of these objects is so
small, we find that many of these objects travel unaided only at a constant (terminal) velocity. Terminal velocities for bacteria
(size about 1 pm ) can be about 2 pm/s . To move at a greater speed, many bacteria swim using flagella (organelles shaped

like little tails) that are powered by little motors embedded in the cell. Sediment in a lake can move at a greater terminal velocity
(about 5 um/s), so it can take days to reach the bottom of the lake after being deposited on the surface.

If we compare animals living on land with those in water, you can see how drag has influenced evolution. Fishes, dolphins, and
even massive whales are streamlined in shape to reduce drag forces. Birds are streamlined and migratory species that fly large
distances often have particular features such as long necks. Flocks of birds fly in the shape of a spear head as the flock forms a
streamlined pattern (see Figure 5.11). In humans, one important example of streamlining is the shape of sperm, which need to
be efficient in their use of energy.

Figure 5.11 Geese fly in a V formation during their long migratory travels. This shape reduces drag and energy consumption for individual birds, and
also allows them a better way to communicate. (credit: Julo, Wikimedia Commons)
Galileo's Experiment

Galileo is said to have dropped two objects of different masses from the Tower of Pisa. He measured how long it took each
to reach the ground. Since stopwatches weren't readily available, how do you think he measured their fall time? If the
objects were the same size, but with different masses, what do you think he should have observed? Would this result be
different if done on the Moon?

PhET Explorations: Masses & Springs

A realistic mass and spring laboratory. Hang masses from springs and adjust the spring stiffness and damping. You can
even slow time. Transport the lab to different planets. A chart shows the kinetic, potential, and thermal energy for each

spring.
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PhET Interactive Simulation

Figure 5.12 Masses & Springs (http://cnx.org/content/m54904/1.4/mass-spring-lab_en.jar)

5.3 Elasticity: Stress and Strain

Learning Objectives

By the end of this section, you will be able to:

» State Hooke's law.

« Explain Hooke's law using graphical representation between deformation and applied force.

« Discuss the three types of deformations such as changes in length, sideways shear, and changes in volume.
» Describe with examples the Young's modulus, shear modulus, and bulk modulus.

« Determine the change in length given mass, length, and radius.

We now move from consideration of forces that affect the motion of an object (such as friction and drag) to those that affect an
object's shape. If a bulldozer pushes a car into a wall, the car will not move but it will noticeably change shape. A change in
shape due to the application of a force is a deformation. Even very small forces are known to cause some deformation. For
small deformations, two important characteristics are observed. First, the object returns to its original shape when the force is
removed—that is, the deformation is elastic for small deformations. Second, the size of the deformation is proportional to the
force—that is, for small deformations, Hooke's law is obeyed. In equation form, Hooke's law is given by

F =kAL, (5.26)

where AL is the amount of deformation (the change in length, for example) produced by the force F, and k is a
proportionality constant that depends on the shape and composition of the object and the direction of the force. Note that this
force is a function of the deformation AL —it is not constant as a kinetic friction force is. Rearranging this to
AL = F (5.27)
k
makes it clear that the deformation is proportional to the applied force. Figure 5.13 shows the Hooke's law relationship between
the extension AL of a spring or of a human bone. For metals or springs, the straight line region in which Hooke's law pertains is

much larger. Bones are brittle and the elastic region is small and the fracture abrupt. Eventually a large enough stress to the
material will cause it to break or fracture.

Hooke's Law
F = kAL, (5.28)

where AL is the amount of deformation (the change in length, for example) produced by the force F', and k is a
proportionality constant that depends on the shape and composition of the object and the direction of the force.

_F (5.29)
AL = T
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AL
= Hooke's law E
obeyed
’ . : Fracture
r———— Elastic region —.Permanenl
deformation

Figure 5.13 A graph of deformation AL versus applied force [ . The straight segment is the linear region where Hooke's law is obeyed. The slope

of the straight region is 1 . For larger forces, the graph is curved but the deformation is still elastic— AL will return to zero if the force is removed.

k

Still greater forces permanently deform the object until it finally fractures. The shape of the curve near fracture depends on several factors, including
how the force I is applied. Note that in this graph the slope increases just before fracture, indicating that a small increase in F' is producing a large

increase in L near the fracture.

The proportionality constant k depends upon a number of factors for the material. For example, a guitar string made of nylon
stretches when it is tightened, and the elongation AL is proportional to the force applied (at least for small deformations).
Thicker nylon strings and ones made of steel stretch less for the same applied force, implying they have a larger k (see Figure
5.14). Finally, all three strings return to their normal lengths when the force is removed, provided the deformation is small. Most

materials will behave in this manner if the deformation is less than about 0.1% or about 1 part in 103 .

LA

aLil)
0

ik

Figure 5.14 The same force, in this case a weight ( W ), applied to three different guitar strings of identical length produces the three different
deformations shown as shaded segments. The string on the left is thin nylon, the one in the middle is thicker nylon, and the one on the right is steel.

Stretch Yourself a Little

How would you go about measuring the proportionality constant k of a rubber band? If a rubber band stretched 3 cm when

a 100-g mass was attached to it, then how much would it stretch if two similar rubber bands were attached to the same
mass—even if put together in parallel or alternatively if tied together in series?

We now consider three specific types of deformations: changes in length (tension and compression), sideways shear (stress),
and changes in volume. All deformations are assumed to be small unless otherwise stated.

Changes in Length—Tension and Compression: Elastic Modulus
A change in length AL is produced when a force is applied to a wire or rod parallel to its length Ly, either stretching it (a

tension) or compressing it. (See Figure 5.15.)
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(@) (b)

Figure 5.15 (a) Tension. The rod is stretched a length AL when aforce is applied parallel to its length. (b) Compression. The same rod is

compressed by forces with the same magnitude in the opposite direction. For very small deformations and uniform materials, AL is approximately
the same for the same magnitude of tension or compression. For larger deformations, the cross-sectional area changes as the rod is compressed or

stretched.

Experiments have shown that the change in length ( AL ) depends on only a few variables. As already noted, AL is
proportional to the force F' and depends on the substance from which the object is made. Additionally, the change in length is
proportional to the original length L(, and inversely proportional to the cross-sectional area of the wire or rod. For example, a

long guitar string will stretch more than a short one, and a thick string will stretch less than a thin one. We can combine all these
factors into one equation for AL :

aL=LEL, (530

where AL is the change in length, F the applied force, Y is a factor, called the elastic modulus or Young's modulus, that
depends on the substance, A is the cross-sectional area, and L, is the original length. Table 5.3 lists values of Y for several

materials—those with a large Y are said to have a large tensile strength because they deform less for a given tension or
compression.
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Table 5.3 Elastic Modulil!

(10° N/m?) (10° N/m?) (10° N/m?)
Aluminum 70 25 75
Bone — tension 16 80 8
Bone — _ 9
compression
Brass 90 35 75
Brick 15
Concrete 20
Glass 70 20 30
Granite 45 20 45
Hair (human) 10
Hardwood 15 10
Iron, cast 100 40 90
Lead 16 5 50
Marble 60 20 70
Nylon
Polystyrene
Silk
Spider thread
Steel 210 80 130
Tendon 1
Acetone 0.7
Ethanol 0.9
Glycerin 4.5
Mercury 25
Water 2.2

Young's moduli are not listed for liquids and gases in Table 5.3 because they cannot be stretched or compressed in only one
direction. Note that there is an assumption that the object does not accelerate, so that there are actually two applied forces of
magnitude F acting in opposite directions. For example, the strings in Figure 5.15 are being pulled down by a force of

magnitude w and held up by the ceiling, which also exerts a force of magnitude w .

Example 5.3 The Stretch of a Long Cable

Suspension cables are used to carry gondolas at ski resorts. (See Figure 5.16) Consider a suspension cable that includes
an unsupported span of 3020 m. Calculate the amount of stretch in the steel cable. Assume that the cable has a diameter of

5.6 cm and the maximum tension it can withstand is 3.0x10° N .

1. Approximate and average values. Young's moduli Y for tension and compression sometimes differ but are averaged here.
Bone has significantly different Young's moduli for tension and compression.
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Figure 5.16 Gondolas travel along suspension cables at the Gala Yuzawa ski resort in Japan. (credit: Rudy Herman, Flickr)

Strategy
The force is equal to the maximum tension, or F' = 3.0x10° N . The cross-sectional area is 772 = 2.46x107> m2 . The
equation AL = %LO can be used to find the change in length.

Solution
All quantities are known. Thus,

6 (5.31)
AL = ( 19 2)( 30X103N2)(3020m)
210x107 N/m~“/\2.46x10™" m
= 18m.

Discussion

This is quite a stretch, but only about 0.6% of the unsupported length. Effects of temperature upon length might be important
in these environments.

Bones, on the whole, do not fracture due to tension or compression. Rather they generally fracture due to sideways impact or
bending, resulting in the bone shearing or snapping. The behavior of bones under tension and compression is important because
it determines the load the bones can carry. Bones are classified as weight-bearing structures such as columns in buildings and
trees. Weight-bearing structures have special features; columns in building have steel-reinforcing rods while trees and bones are
fibrous. The bones in different parts of the body serve different structural functions and are prone to different stresses. Thus the
bone in the top of the femur is arranged in thin sheets separated by marrow while in other places the bones can be cylindrical
and filled with marrow or just solid. Overweight people have a tendency toward bone damage due to sustained compressions in
bone joints and tendons.

Another biological example of Hooke's law occurs in tendons. Functionally, the tendon (the tissue connecting muscle to bone)
must stretch easily at first when a force is applied, but offer a much greater restoring force for a greater strain. Figure 5.17 shows
a stress-strain relationship for a human tendon. Some tendons have a high collagen content so there is relatively little strain, or
length change; others, like support tendons (as in the leg) can change length up to 10%. Note that this stress-strain curve is
nonlinear, since the slope of the line changes in different regions. In the first part of the stretch called the toe region, the fibers in
the tendon begin to align in the direction of the stress—this is called uncrimping. In the linear region, the fibrils will be stretched,
and in the failure region individual fibers begin to break. A simple model of this relationship can be illustrated by springs in
parallel: different springs are activated at different lengths of stretch. Examples of this are given in the problems at end of this
chapter. Ligaments (tissue connecting bone to bone) behave in a similar way.

Figure 5.17 Typical stress-strain curve for mammalian tendon. Three regions are shown: (1) toe region (2) linear region, and (3) failure region.

Unlike bones and tendons, which need to be strong as well as elastic, the arteries and lungs need to be very stretchable. The
elastic properties of the arteries are essential for blood flow. The pressure in the arteries increases and arterial walls stretch
when the blood is pumped out of the heart. When the aortic valve shuts, the pressure in the arteries drops and the arterial walls
relax to maintain the blood flow. When you feel your pulse, you are feeling exactly this—the elastic behavior of the arteries as the
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blood gushes through with each pump of the heart. If the arteries were rigid, you would not feel a pulse. The heart is also an
organ with special elastic properties. The lungs expand with muscular effort when we breathe in but relax freely and elastically
when we breathe out. Our skins are particularly elastic, especially for the young. A young person can go from 100 kg to 60 kg
with no visible sag in their skins. The elasticity of all organs reduces with age. Gradual physiological aging through reduction in
elasticity starts in the early 20s.

Example 5.4 Calculating Deformation: How Much Does Your Leg Shorten When You Stand on
It?

Calculate the change in length of the upper leg bone (the femur) when a 70.0 kg man supports 62.0 kg of his mass on it,
assuming the bone to be equivalent to a uniform rod that is 40.0 cm long and 2.00 cm in radius.

Strategy
The force is equal to the weight supported, or

F = mg = (62.0 kg)(9.80 m/s*) = 607.6 N, (5.32)
and the cross-sectional area is zr2 = 1.257x107> m?. The equation AL = 11/_5140 can be used to find the change in
length.
Solution

All quantities except AL are known. Note that the compression value for Young's modulus for bone must be used here.

Thus,
(5.33)
AL = ( L 2)( G016 N 2)(0.400m)
9x10° N/m?2/\1.257x1073 m
= 2x107° m.
Discussion

This small change in length seems reasonable, consistent with our experience that bones are rigid. In fact, even the rather
large forces encountered during strenuous physical activity do not compress or bend bones by large amounts. Although
bone is rigid compared with fat or muscle, several of the substances listed in Table 5.3 have larger values of Young's
modulus Y . In other words, they are more rigid and have greater tensile strength.

The equation for change in length is traditionally rearranged and written in the following form:

F _ YM (5.34)
A Ly’
The ratio of force to area, %, is defined as stress (measured in N/m2 ), and the ratio of the change in length to length, %, is
0
defined as strain (a unitless quantity). In other words,
stress = YXstrain. (5.35)

In this form, the equation is analogous to Hooke's law, with stress analogous to force and strain analogous to deformation. If we
again rearrange this equation to the form

F = YAAL (5.36)
Ly’
we see that it is the same as Hooke's law with a proportionality constant
k= YA (5.37)
Ly

This general idea—that force and the deformation it causes are proportional for small deformations—applies to changes in
length, sideways bending, and changes in volume.

Stress

The ratio of force to area, %, is defined as stress measured in N/mZ2.
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, is defined as strain (a unitless quantity). In other words,

Strain
. . AL
The ratio of the change in length to length, I
0
(5.38)

stress = YXstrain.

Sideways Stress: Shear Modulus
Figure 5.18 illustrates what is meant by a sideways stress or a shearing force. Here the deformation is called Ax and it is

perpendicular to Ly, rather than parallel as with tension and compression. Shear deformation behaves similarly to tension and
(5.39)

compression and can be described with similar equations. The expression for shear deformation is

Ax =Ly,

where § is the shear modulus (see Table 5.3) and F is the force applied perpendicular to L and parallel to the cross-

sectional area A . Again, to keep the object from accelerating, there are actually two equal and opposite forces F applied
across opposite faces, as illustrated in Figure 5.18. The equation is logical—for example, it is easier to bend a long thin pencil

(small A) than a short thick one, and both are more easily bent than similar steel rods (large S).
(5.40)

Shear Deformation
Ax=1F1,
T=SA0

where § is the shear modulus and F' is the force applied perpendicular to L, and parallel to the cross-sectional area A .

| e

Figure 5.18 Shearing forces are applied perpendicular to the length LO and parallel to the area A, producing a deformation AX . Vertical forces

are not shown, but it should be kept in mind that in addition to the two shearing forces, F , there must be supporting forces to keep the object from
rotating. The distorting effects of these supporting forces are ignored in this treatment. The weight of the object also is not shown, since it is usually

negligible compared with forces large enough to cause significant deformations.
Examination of the shear moduli in Table 5.3 reveals some telling patterns. For example, shear moduli are less than Young's
moduli for most materials. Bone is a remarkable exception. Its shear modulus is not only greater than its Young's modulus, but it
is as large as that of steel. This is one reason that bones can be long and relatively thin. Bones can support loads comparable to
that of concrete and steel. Most bone fractures are not caused by compression but by excessive twisting and bending.

The spinal column (consisting of 26 vertebral segments separated by discs) provides the main support for the head and upper
part of the body. The spinal column has normal curvature for stability, but this curvature can be increased, leading to increased
shearing forces on the lower vertebrae. Discs are better at withstanding compressional forces than shear forces. Because the
spine is not vertical, the weight of the upper body exerts some of both. Pregnant women and people that are overweight (with
large abdomens) need to move their shoulders back to maintain balance, thereby increasing the curvature in their spine and so
increasing the shear component of the stress. An increased angle due to more curvature increases the shear forces along the
plane. These higher shear forces increase the risk of back injury through ruptured discs. The lumbosacral disc (the wedge
shaped disc below the last vertebrae) is particularly at risk because of its location.
The shear moduli for concrete and brick are very small; they are too highly variable to be listed. Concrete used in buildings can
withstand compression, as in pillars and arches, but is very poor against shear, as might be encountered in heavily loaded floors
or during earthquakes. Modern structures were made possible by the use of steel and steel-reinforced concrete. Almost by
definition, liquids and gases have shear moduli near zero, because they flow in response to shearing forces.
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Example 5.5 Calculating Force Required to Deform: That Nail Does Not Bend Much Under a

Find the mass of the picture hanging from a steel nail as shown in Figure 5.19, given that the nail bends only 1.80 pum .
(Assume the shear modulus is known to two significant figures.)

L, =5.00 mm

Figure 5.19 Side view of a nail with a picture hung from it. The nail flexes very slightly (shown much larger than actual) because of the shearing
effect of the supported weight. Also shown is the upward force of the wall on the nail, illustrating that there are equal and opposite forces applied
across opposite cross sections of the nail. See Example 5.5 for a calculation of the mass of the picture.

Strategy
The force F' on the nail (neglecting the nail's own weight) is the weight of the picture w . If we can find w , then the mass
of the picture is just % . The equation Ax = g,—iLo can be solved for F .
Solution
Solving the equation Ax = }S’_iLO for F', we see that all other quantities can be found:
F=SAp, (5.41)
Ly
Siis found in Table 5.3 and is S = 80x 10 N/m? . The radius 7 is 0.750 mm (as seen in the figure), so the cross-
sectional area is
A= =177x10"%m?. )
The value for L, is also shown in the figure. Thus,
9 2 -6 2 (5.43)
F = 8010 NmOATTXI0 " m7) ) g9 106 m) = 51 N.
(5.00x107° m)
This 51 N force is the weight w of the picture, so the picture's mass is
m=®=E_5)kg (5.44)

[
Discussion
This is a fairly massive picture, and it is impressive that the nail flexes only 1.80 um —an amount undetectable to the

unaided eye.

Changes in Volume: Bulk Modulus

An object will be compressed in all directions if inward forces are applied evenly on all its surfaces as in Figure 5.20. ltis
relatively easy to compress gases and extremely difficult to compress liquids and solids. For example, air in a wine bottle is
compressed when it is corked. But if you try corking a brim-full bottle, you cannot compress the wine—some must be removed if
the cork is to be inserted. The reason for these different compressibilities is that atoms and molecules are separated by large
empty spaces in gases but packed close together in liquids and solids. To compress a gas, you must force its atoms and
molecules closer together. To compress liquids and solids, you must actually compress their atoms and molecules, and very
strong electromagnetic forces in them oppose this compression.
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A 'I= Volume V,

]
F — * Volume
| i i
F— | —~tF

Figure 5.20 An inward force on all surfaces compresses this cube. Its change in volume is proportional to the force per unit area and its original
volume, and is related to the compressibility of the substance.

We can describe the compression or volume deformation of an object with an equation. First, we note that a force “applied
F

evenly” is defined to have the same stress, or ratio of force to area A on all surfaces. The deformation produced is a change in

volume AV, which is found to behave very similarly to the shear, tension, and compression previously discussed. (This is not

surprising, since a compression of the entire object is equivalent to compressing each of its three dimensions.) The relationship
of the change in volume to other physical quantities is given by

_1F (5.45)
AV = BAVO’
where B is the bulk modulus (see Table 5.3), V|, is the original volume, and % is the force per unit area applied uniformly

inward on all surfaces. Note that no bulk moduli are given for gases.

What are some examples of bulk compression of solids and liquids? One practical example is the manufacture of industrial-
grade diamonds by compressing carbon with an extremely large force per unit area. The carbon atoms rearrange their crystalline
structure into the more tightly packed pattern of diamonds. In nature, a similar process occurs deep underground, where
extremely large forces result from the weight of overlying material. Another natural source of large compressive forces is the
pressure created by the weight of water, especially in deep parts of the oceans. Water exerts an inward force on all surfaces of a
submerged object, and even on the water itself. At great depths, water is measurably compressed, as the following example
illustrates.

Example 5.6 Calculating Change in Volume with Deformation: How Much Is Water Compressed
at Great Ocean Depths?

Calculate the fractional decrease in volume (%) for seawater at 5.00 km depth, where the force per unit area is
0

5.00x10" N/m? .
Strategy
Equation AV = }g—ivo is the correct physical relationship. All quantities in the equation except % are known.
0
Solution
Solving for the unknown AV gives
Vo
AV _ 1 (5.46)
Vo BA’
Substituting known values with the value for the bulk modulus B from Table 5.3,
AV _ 5.00x107 N/m? A7)
Vo 2.2x10° N/m?
= 0.023 =2.3%.

Discussion

Although measurable, this is not a significant decrease in volume considering that the force per unit area is about 500
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atmospheres (1 million pounds per square foot). Liquids and solids are extraordinarily difficult to compress.

Conversely, very large forces are created by liquids and solids when they try to expand but are constrained from doing so—which
is equivalent to compressing them to less than their normal volume. This often occurs when a contained material warms up,
since most materials expand when their temperature increases. If the materials are tightly constrained, they deform or break their
container. Another very common example occurs when water freezes. Water, unlike most materials, expands when it freezes,
and it can easily fracture a boulder, rupture a biological cell, or crack an engine block that gets in its way.

Other types of deformations, such as torsion or twisting, behave analogously to the tension, shear, and bulk deformations
considered here.

deformation: change in shape due to the application of force
drag force: [, found to be proportional to the square of the speed of the object; mathematically

FDO<V2

Fp= %Cpsz,
where C is the drag coefficient, A is the area of the object facing the fluid, and p is the density of the fluid

friction: a force that opposes relative motion or attempts at motion between systems in contact

Hooke's law: proportional relationship between the force F' on a material and the deformation AL it causes, F = kAL

kinetic friction: a force that opposes the motion of two systems that are in contact and moving relative to one another

magnitude of kinetic friction: f; = u, N, where py is the coefficient of kinetic friction

magnitude of static friction: f; < us N, where uj is the coefficient of static friction and N is the magnitude of the normal

force
shear deformation: deformation perpendicular to the original length of an object

static friction: a force that opposes the motion of two systems that are in contact and are not moving relative to one another

Stokes' law: F'¢ = 671y, where r is the radius of the object, # is the viscosity of the fluid, and v is the object's velocity

strain: ratio of change in length to original length
stress: ratio of force to area

tensile strength: measure of deformation for a given tension or compression

Section Summary

5.1 Friction
« Friction is a contact force between systems that opposes the motion or attempted motion between them. Simple friction is
proportional to the normal force N pushing the systems together. (A normal force is always perpendicular to the contact

surface between systems.) Friction depends on both of the materials involved. The magnitude of static friction fg between

systems stationary relative to one another is given by

fS S IUSN’
where ug is the coefficient of static friction, which depends on both of the materials.

« The kinetic friction force f, between systems moving relative to one another is given by

Jx = uhN,
where . is the coefficient of kinetic friction, which also depends on both materials.
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5.2 Drag Forces
« Drag forces acting on an object moving in a fluid oppose the motion. For larger objects (such as a baseball) moving at a
velocity v in air, the drag force is given by

Fp = 3CpAV?,

where C is the drag coefficient (typical values are given in Table 5.2), A is the area of the object facing the fluid, and p
is the fluid density.
« For small objects (such as a bacterium) moving in a denser medium (such as water), the drag force is given by Stokes' law,
Fg = 6mnrv,
where r is the radius of the object, # is the fluid viscosity, and v is the object's velocity.

5.3 Elasticity: Stress and Strain
« Hooke's law is given by
F = kAL,
where AL is the amount of deformation (the change in length), F is the applied force, and k is a proportionality constant

that depends on the shape and composition of the object and the direction of the force. The relationship between the
deformation and the applied force can also be written as

AL=EL,

where Y is Young's modulus, which depends on the substance, A is the cross-sectional area, and L, is the original
length.
* The ratio of force to area, % is defined as stress, measured in N/m?2.

h, AL

« The ratio of the change in length to length, T is defined as strain (a unitless quantity). In other words,
0

stress = Y'Xstrain.
* The expression for shear deformation is

Ax = Lo,

_1F
SA
where S is the shear modulus and F' is the force applied perpendicular to L, and parallel to the cross-sectional area A .

« The relationship of the change in volume to other physical quantities is given by

_1F
AV = BAVO’
where B is the bulk modulus, V|, is the original volume, and II; is the force per unit area applied uniformly inward on all
surfaces.
Conceptual Questions
5.1 Friction

1. Define normal force. What is its relationship to friction when friction behaves simply?

2. The glue on a piece of tape can exert forces. Can these forces be a type of simple friction? Explain, considering especially that
tape can stick to vertical walls and even to ceilings.

3. When you learn to drive, you discover that you need to let up slightly on the brake pedal as you come to a stop or the car will
stop with a jerk. Explain this in terms of the relationship between static and kinetic friction.

4. When you push a piece of chalk across a chalkboard, it sometimes screeches because it rapidly alternates between slipping
and sticking to the board. Describe this process in more detail, in particular explaining how it is related to the fact that kinetic
friction is less than static friction. (The same slip-grab process occurs when tires screech on pavement.)

5.2 Drag Forces

5. Athletes such as swimmers and bicyclists wear body suits in competition. Formulate a list of pros and cons of such suits.

6. Two expressions were used for the drag force experienced by a moving object in a liquid. One depended upon the speed,
while the other was proportional to the square of the speed. In which types of motion would each of these expressions be more
applicable than the other one?

7. As cars travel, oil and gasoline leaks onto the road surface. If a light rain falls, what does this do to the control of the car?
Does a heavy rain make any difference?
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8. Why can a squirrel jump from a tree branch to the ground and run away undamaged, while a human could break a bone in
such a fall?
5.3 Elasticity: Stress and Strain

9. The elastic properties of the arteries are essential for blood flow. Explain the importance of this in terms of the characteristics
of the flow of blood (pulsating or continuous).

10. What are you feeling when you feel your pulse? Measure your pulse rate for 10 s and for 1 min. Is there a factor of 6
difference?

11. Examine different types of shoes, including sports shoes and thongs. In terms of physics, why are the bottom surfaces
designed as they are? What differences will dry and wet conditions make for these surfaces?

12. Would you expect your height to be different depending upon the time of day? Why or why not?

13. Why can a squirrel jump from a tree branch to the ground and run away undamaged, while a human could break a bone in
such a fall?

14. Explain why pregnant women often suffer from back strain late in their pregnancy.

15. An old carpenter's trick to keep nails from bending when they are pounded into hard materials is to grip the center of the nalil
firmly with pliers. Why does this help?

16. When a glass bottle full of vinegar warms up, both the vinegar and the glass expand, but vinegar expands significantly more
with temperature than glass. The bottle will break if it was filled to its tightly capped lid. Explain why, and also explain how a
pocket of air above the vinegar would prevent the break. (This is the function of the air above liquids in glass containers.)
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Problems & Exercises

5.1 Friction

1. A physics major is cooking breakfast when he notices that
the frictional force between his steel spatula and his Teflon
frying pan is only 0.200 N. Knowing the coefficient of kinetic
friction between the two materials, he quickly calculates the
normal force. What is it?

2. (a) When rebuilding her car's engine, a physics major must
exert 300 N of force to insert a dry steel piston into a steel
cylinder. What is the magnitude of the normal force between
the piston and cylinder? (b) What is the magnitude of the
force would she have to exert if the steel parts were oiled?

3. (a) What is the maximum frictional force in the knee joint of
a person who supports 66.0 kg of her mass on that knee? (b)
During strenuous exercise it is possible to exert forces to the
joints that are easily ten times greater than the weight being
supported. What is the maximum force of friction under such
conditions? The frictional forces in joints are relatively small in
all circumstances except when the joints deteriorate, such as
from injury or arthritis. Increased frictional forces can cause
further damage and pain.

4. Suppose you have a 120-kg wooden crate resting on a
wood floor. (a) What maximum force can you exert
horizontally on the crate without moving it? (b) If you continue
to exert this force once the crate starts to slip, what will the
magnitude of its acceleration then be?

5. (a) If half of the weight of a small 1.00x103 kg utility

truck is supported by its two drive wheels, what is the
magnitude of the maximum acceleration it can achieve on dry
concrete? (b) Will a metal cabinet lying on the wooden bed of
the truck slip if it accelerates at this rate? (c) Solve both
problems assuming the truck has four-wheel drive.

6. A team of eight dogs pulls a sled with waxed wood runners
on wet snow (mush!). The dogs have average masses of 19.0
kg, and the loaded sled with its rider has a mass of 210 kg.
(a) Calculate the magnitude of the acceleration starting from
rest if each dog exerts an average force of 185 N backward
on the snow. (b) What is the magnitude of the acceleration
once the sled starts to move? (c) For both situations,
calculate the magnitude of the force in the coupling between
the dogs and the sled.

7. Consider the 65.0-kg ice skater being pushed by two
others shown in Figure 5.21. (a) Find the direction and
magnitude of F ., the total force exerted on her by the

others, given that the magnitudes /'y and F, are 26.4 N

and 18.6 N, respectively. (b) What is her initial acceleration if
she is initially stationary and wearing steel-bladed skates that
point in the direction of F . ? (c) What is her acceleration

assuming she is already moving in the direction of F . ?

(Remember that friction always acts in the direction opposite
that of motion or attempted motion between surfaces in
contact.)

n

Free-body diagram
1]

F;

"=

F,

(a) (b)

Figure 5.21

8. Show that the acceleration of any object down a frictionless
incline that makes an angle @ with the horizontal is

a = g sin . (Note that this acceleration is independent of
mass.)

9. Show that the acceleration of any object down an incline
where friction behaves simply (that is, where fi = u N )is

a = g(sin @ — uycos ). Note that the acceleration is

independent of mass and reduces to the expression found in
the previous problem when friction becomes negligibly small

(g = 0).

10. Calculate the deceleration of a snow boarder going up a
5.0°, slope assuming the coefficient of friction for waxed

wood on wet snow. The result of Exercise 5.9 may be useful,
but be careful to consider the fact that the snow boarder is
going uphill. Explicitly show how you follow the steps in
Problem-Solving Strategies.

11. (a) Calculate the acceleration of a skier heading down a
10.0° slope, assuming the coefficient of friction for waxed

wood on wet snow. (b) Find the angle of the slope down
which this skier could coast at a constant velocity. You can
neglect air resistance in both parts, and you will find the result
of Exercise 5.9 to be useful. Explicitly show how you follow
the steps in the Problem-Solving Strategies.

12. If an object is to rest on an incline without slipping, then
friction must equal the component of the weight of the object
parallel to the incline. This requires greater and greater
friction for steeper slopes. Show that the maximum angle of
an incline above the horizontal for which an object will not

slide down is @ = tan~! Us . You may use the result of the

previous problem. Assume that a = 0 and that static friction
has reached its maximum value.
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13. Calculate the maximum deceleration of a car that is
heading down a 6° slope (one that makes an angle of 6°
with the horizontal) under the following road conditions. You
may assume that the weight of the car is evenly distributed on
all four tires and that the coefficient of static friction is
involved—that is, the tires are not allowed to slip during the
deceleration. (Ignore rolling.) Calculate for a car: (a) On dry
concrete. (b) On wet concrete. (c) On ice, assuming that

s = 0.100, the same as for shoes on ice.

14. Calculate the maximum acceleration of a car that is
heading up a 4° slope (one that makes an angle of 4° with
the horizontal) under the following road conditions. Assume
that only half the weight of the car is supported by the two
drive wheels and that the coefficient of static friction is
involved—that is, the tires are not allowed to slip during the
acceleration. (Ignore rolling.) (a) On dry concrete. (b) On wet
concrete. (c) On ice, assuming that ug = 0.100, the same

as for shoes on ice.
15. Repeat Exercise 5.14 for a car with four-wheel drive.

16. A freight train consists of two 8.00Xx 105—kg engines and

45 cars with average masses of 5.50x 10° kg . (@) What
force must each engine exert backward on the track to
accelerate the train at a rate of 5.00x10™2m/s? if the

force of friction is 7.50x10° N , assuming the engines exert

identical forces? This is not a large frictional force for such a
massive system. Rolling friction for trains is small, and
consequently trains are very energy-efficient transportation
systems. (b) What is the magnitude of the force in the
coupling between the 37th and 38th cars (this is the force
each exerts on the other), assuming all cars have the same
mass and that friction is evenly distributed among all of the
cars and engines?

17. Consider the 52.0-kg mountain climber in Figure 5.22. (a)
Find the tension in the rope and the force that the mountain
climber must exert with her feet on the vertical rock face to
remain stationary. Assume that the force is exerted parallel to
her legs. Also, assume negligible force exerted by her arms.
(b) What is the minimum coefficient of friction between her
shoes and the cliff?

Figure 5.22 Part of the climber's weight is supported by her rope and
part by friction between her feet and the rock face.

18. A contestant in a winter sporting event pushes a 45.0-kg
block of ice across a frozen lake as shown in Figure 5.23(a).
(a) Calculate the minimum force F' he must exert to get the

block moving. (b) What is the magnitude of its acceleration
once it starts to move, if that force is maintained?
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19. Repeat Exercise 5.18 with the contestant pulling the
block of ice with a rope over his shoulder at the same angle
above the horizontal as shown in Figure 5.23(b).

(b)

Figure 5.23 Which method of sliding a block of ice requires less
force—(a) pushing or (b) pulling at the same angle above the horizontal?

5.2 Drag Forces

20. The terminal velocity of a person falling in air depends
upon the weight and the area of the person facing the fluid.
Find the terminal velocity (in meters per second and
kilometers per hour) of an 80.0-kg skydiver falling in a pike

(headfirst) position with a surface area of 0.140 m2.

21. A 60-kg and a 90-kg skydiver jump from an airplane at an
altitude of 6000 m, both falling in the pike position. Make
some assumption on their frontal areas and calculate their
terminal velocities. How long will it take for each skydiver to
reach the ground (assuming the time to reach terminal
velocity is small)? Assume all values are accurate to three
significant digits.

22. A 560-g squirrel with a surface area of 930 cm? falls

from a 5.0-m tree to the ground. Estimate its terminal velocity.
(Use a drag coefficient for a horizontal skydiver.) What will be
the velocity of a 56-kg person hitting the ground, assuming no
drag contribution in such a short distance?

23. To maintain a constant speed, the force provided by a
car's engine must equal the drag force plus the force of
friction of the road (the rolling resistance). (a) What are the
magnitudes of drag forces at 70 km/h and 100 km/h for a
Toyota Camry? (Drag area is 0.70 mz) (b) What is the
magnitude of drag force at 70 km/h and 100 km/h for a
Hummer H2? (Drag area is 2.44 m? ) Assume all values are
accurate to three significant digits.

24. By what factor does the drag force on a car increase as it
goes from 65 to 110 km/h?

25. Calculate the speed a spherical rain drop would achieve
falling from 5.00 km (a) in the absence of air drag (b) with air
drag. Take the size across of the drop to be 4 mm, the density

tobe 1.00x103 kg/m3 , and the surface area to be > .

26. Using Stokes' law, verify that the units for viscosity are
kilograms per meter per second.

27. Find the terminal velocity of a spherical bacterium
(diameter 2.00 pm ) falling in water. You will first need to

note that the drag force is equal to the weight at terminal
velocity. Take the density of the bacterium to be

1.10x10° kg/m?.

28. Stokes' law describes sedimentation of particles in liquids
and can be used to measure viscosity. Particles in liquids
achieve terminal velocity quickly. One can measure the time it
takes for a particle to fall a certain distance and then use
Stokes' law to calculate the viscosity of the liquid. Suppose a

steel ball bearing (density 7.8X 103 kg/m3 , diameter

3.0 mm) is dropped in a container of motor oil. It takes 12 s
to fall a distance of 0.60 m. Calculate the viscosity of the oil.

5.3 Elasticity: Stress and Strain

29. During a circus act, one performer swings upside down
hanging from a trapeze holding another, also upside-down,
performer by the legs. If the upward force on the lower
performer is three times her weight, how much do the bones
(the femurs) in her upper legs stretch? You may assume each
is equivalent to a uniform rod 35.0 cm long and 1.80 cm in
radius. Her mass is 60.0 kg.

30. During a wrestling match, a 150 kg wrestler briefly stands
on one hand during a maneuver designed to perplex his
already moribund adversary. By how much does the upper
arm bone shorten in length? The bone can be represented by
a uniform rod 38.0 cm in length and 2.10 cm in radius.

31. (a) The “lead” in pencils is a graphite composition with a
Young's modulus of about 1X 10° N/m? . calculate the

change in length of the lead in an automatic pencil if you tap it
straight into the pencil with a force of 4.0 N. The lead is 0.50
mm in diameter and 60 mm long. (b) Is the answer
reasonable? That is, does it seem to be consistent with what
you have observed when using pencils?

32. TV broadcast antennas are the tallest artificial structures
on Earth. In 1987, a 72.0-kg physicist placed himself and 400
kg of equipment at the top of one 610-m high antenna to
perform gravity experiments. By how much was the antenna
compressed, if we consider it to be equivalent to a steel
cylinder 0.150 m in radius?

33. (a) By how much does a 65.0-kg mountain climber stretch
her 0.800-cm diameter nylon rope when she hangs 35.0 m
below a rock outcropping? (b) Does the answer seem to be
consistent with what you have observed for nylon ropes?
Would it make sense if the rope were actually a bungee
cord?

34. A 20.0-m tall hollow aluminum flagpole is equivalent in
strength to a solid cylinder 4.00 cm in diameter. A strong wind
bends the pole much as a horizontal force of 900 N exerted at
the top would. How far to the side does the top of the pole
flex?
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35. As an oil well is drilled, each new section of drill pipe
supports its own weight and that of the pipe and drill bit
beneath it. Calculate the stretch in a new 6.00 m length of
steel pipe that supports 3.00 km of pipe having a mass of
20.0 kg/m and a 100-kg drill bit. The pipe is equivalent in
strength to a solid cylinder 5.00 cm in diameter.

36. Calculate the force a piano tuner applies to stretch a steel
piano wire 8.00 mm, if the wire is originally 0.850 mm in
diameter and 1.35 m long.

37. A vertebra is subjected to a shearing force of 500 N. Find
the shear deformation, taking the vertebra to be a cylinder
3.00 cm high and 4.00 cm in diameter.

38. A disk between vertebrae in the spine is subjected to a
shearing force of 600 N. Find its shear deformation, taking it

to have the shear modulus of 1x10° N/m?2 . The disk is

equivalent to a solid cylinder 0.700 cm high and 4.00 cm in
diameter.

39. When using a pencil eraser, you exert a vertical force of
6.00 N at a distance of 2.00 cm from the hardwood-eraser
joint. The pencil is 6.00 mm in diameter and is held at an
angle of 20.0° to the horizontal. (a) By how much does the

wood flex perpendicular to its length? (b) How much is it
compressed lengthwise?

40. To consider the effect of wires hung on poles, we take
data from Example 4.8, in which tensions in wires supporting
a traffic light were calculated. The left wire made an angle
30.0° below the horizontal with the top of its pole and carried

a tension of 108 N. The 12.0 m tall hollow aluminum pole is
equivalent in strength to a 4.50 cm diameter solid cylinder. (a)
How far is it bent to the side? (b) By how much is it
compressed?

41. A farmer making grape juice fills a glass bottle to the brim
and caps it tightly. The juice expands more than the glass

when it warms up, in such a way that the volume increases by

0.2% (thatis, AV/Vy= 2><10_3) relative to the space

available. Calculate the magnitude of the normal force
exerted by the juice per square centimeter if its bulk modulus
is 1.8%10° N/m? , assuming the bottle does not break. In
view of your answer, do you think the bottle will survive?

42. (a) When water freezes, its volume increases by 9.05%
(thatis, AV/Vy= 9.05%1072 ). What force per unit area
is water capable of exerting on a container when it freezes?
(It is acceptable to use the bulk modulus of water in this

problem.) (b) Is it surprising that such forces can fracture
engine blocks, boulders, and the like?

43. This problem returns to the tightrope walker studied in
Example 4.6, who created a tension of 3.94x10°N ina

wire making an angle 5.0° below the horizontal with each

supporting pole. Calculate how much this tension stretches
the steel wire if it was originally 15 m long and 0.50 cm in
diameter.

Test Prep for AP® Courses

5.1 Friction

1. When a force of 20 N is applied to a stationary box
weighing 40 N, the box does not move. This means the
coefficient of static friction

44. The pole in Figure 5.24 is at a 90.0° bend in a power
line and is therefore subjected to more shear force than poles
in straight parts of the line. The tension in each line is
4.00x10* N, at the angles shown. The pole is 15.0 m tall,
has an 18.0 cm diameter, and can be considered to have half
the strength of hardwood. (a) Calculate the compression of
the pole. (b) Find how much it bends and in what direction. (c)
Find the tension in a guy wire used to keep the pole straight if
it is attached to the top of the pole at an angle of 30.0° with
the vertical. (Clearly, the guy wire must be in the opposite
direction of the bend.)

Figure 5.24 This telephone pole is ata 90° bend in a power line. A

guy wire is attached to the top of the pole at an angle of 30° with the

vertical.
a. isequalto0.5.
b. is greater than 0.5.
c. islessthan 0.5.
d. cannot be determined.

2. A 2-kg block slides down a ramp which is at an incline of
25°. If the frictional force is 4.86 N, what is the coefficient of
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friction? At what incline will the box slide at a constant
velocity? Assume g = 10 m/s?.

3. A block is given a short push and then slides with constant
friction across a horizontal floor. Which statement best
explains the direction of the force that friction applies on the
moving block?

a. Friction will be in the same direction as the block's
motion because molecular interactions between the
block and the floor will deform the block in the direction
of motion.

b. Friction will be in the same direction as the block's
motion because thermal energy generated at the
interface between the block and the floor adds kinetic
energy to the block.

c. Friction will be in the opposite direction of the block's
motion because molecular interactions between the
block and the floor will deform the block in the opposite
direction of motion.

d. Friction will be in the opposite direction of the block's
motion because thermal energy generated at the
interface between the block and the floor converts some
of the block's kinetic energy to potential energy.

4. A student pushes a cardboard box across a carpeted floor
and afterwards notices that the bottom of the box feels warm.
Explain how interactions between molecules in the cardboard
and molecules in the carpet produced this heat.
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6

Figure 6.1 This Australian Grand Prix Formula 1 race car moves in a circular path as it makes the turn. Its wheels also spin rapidly—the latter
completing many revolutions, the former only part of one (a circular arc). The same physical principles are involved in each. (credit: Richard Munckton)

Chapter Outline

6.1. Rotation Angle and Angular Velocity

6.2. Centripetal Acceleration

6.3. Centripetal Force

6.4. Fictitious Forces and Non-inertial Frames: The Coriolis Force
6.5. Newton's Universal Law of Gravitation

6.6. Satellites and Kepler's Laws: An Argument for Simplicity

Connection for AP® Courses

Many motions, such as the arc of a bird's flight or Earth's path around the Sun, are curved. Recall that Newton's first law tells us
that motion is along a straight line at constant speed unless there is a net external force. We will therefore study not only motion
along curves, but also the forces that cause it, including gravitational forces. This chapter supports Big Idea 3 that interactions
between objects are described by forces, and thus change in motion is a result of a net force exerted on an object. In this
chapter, this idea is applied to uniform circular motion. In some ways, this chapter is a continuation of Dynamics: Newton's
Laws of Motion as we study more applications of Newton's laws of motion.

This chapter deals with the simplest form of curved motion, uniform circular motion, which is motion in a circular path at
constant speed. As an object moves on a circular path, the magnitude of its velocity remains constant, but the direction of the
velocity is changing. This means there is an acceleration that we will refer to as a “centripetal” acceleration caused by a net
external force, also called the “centripetal” force (Enduring Understanding 3.B). The centripetal force is the net force totaling all
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external forces acting on the object (Essential Knowledge 3.B.1). In order to determine the net force, a free-body diagram may
be useful (Essential Knowledge 3.B.2).

Studying this topic illustrates most of the concepts associated with rotational motion and leads to many new topics we group
under the name rotation. This motion can be described using kinematics variables (Essential Knowledge 3.A.1), but in addition to
linear variables, we will introduce angular variables. We use various ways to describe motion, namely, verbally, algebraically and
graphically (Learning Objective 3.A.1.1). Pure rotational motion occurs when points in an object move in circular paths centered
on one point. Pure translational motion is motion with no rotation. Some motion combines both types, such as a rotating hockey
puck moving over ice. Some combinations of both types of motion are conveniently described with fictitious forces which appear
as a result of using a non-inertial frame of reference (Enduring Understanding 3.A).

Furthermore, the properties of uniform circular motion can be applied to the motion of massive objects in a gravitational field.
Thus, this chapter supports Big Idea 1 that gravitational mass is an important property of an object or a system.

We have experimental evidence that gravitational and inertial masses are equal (Enduring Understanding 1.C), and that
gravitational mass is a measure of the strength of the gravitational interaction (Essential Knowledge 1.C.2). Therefore, this
chapter will support Big Idea 2 that fields existing in space can be used to explain interactions, because any massive object
creates a gravitational field in space (Enduring Understanding 2.B). Mathematically, we use Newton's universal law of gravitation
to provide a model for the gravitational interaction between two massive objects (Essential Knowledge 2.B.2). We will discover
that this model describes the interaction of one object with mass with another object with mass (Essential Knowledge 3.C.1), and
also that gravitational force is a long-range force (Enduring Understanding 3.C).

The concepts in this chapter support:
Big Idea 1 Objects and systems have properties such as mass and charge. Systems may have internal structure.

Enduring Understanding 1.C Objects and systems have properties of inertial mass and gravitational mass that are experimentally
verified to be the same and that satisfy conservation principles.

Essential Knowledge 1.C.2 Gravitational mass is the property of an object or a system that determines the strength of the
gravitational interaction with other objects, systems, or gravitational fields.

Essential Knowledge 1.C.3 Objects and systems have properties of inertial mass and gravitational mass that are experimentally
verified to be the same and that satisfy conservation principles.

Big Idea 2 Fields existing in space can be used to explain interactions.
Enduring Understanding 2.B A gravitational field is caused by an object with mass.

Essential Knowledge 2.B.2. The gravitational field caused by a spherically symmetric object with mass is radial and, outside the
object, varies as the inverse square of the radial distance from the center of that object.

Big Idea 3 The interactions of an object with other objects can be described by forces.

Enduring Understanding 3.A All forces share certain common characteristics when considered by observers in inertial reference
frames.

Essential Knowledge 3.A.1. An observer in a particular reference frame can describe the motion of an object using such
quantities as position, displacement, distance, velocity, speed, and acceleration.

Essential Knowledge 3.A.3. A force exerted on an object is always due to the interaction of that object with another object.
Enduring Understanding 3.B Classically, the acceleration of an object interacting with other objects can be predicted by using

a:ZF/m.

Essential Knowledge 3.B.1 If an object of interest interacts with several other objects, the net force is the vector sum of the
individual forces.

Essential Knowledge 3.B.2 Free-body diagrams are useful tools for visualizing forces being exerted on a single object and writing
the equations that represent a physical situation.

Enduring Understanding 3.C At the macroscopic level, forces can be categorized as either long-range (action-at-a-distance)
forces or contact forces.

Essential Knowledge 3.C.1. Gravitational force describes the interaction of one object that has mass with another object that has
mass.

6.1 Rotation Angle and Angular Velocity

Learning Objectives

By the end of this section, you will be able to:

» Define arc length, rotation angle, radius of curvature, and angular velocity.
» Calculate the angular velocity of a car wheel spin.

In Kinematics, we studied motion along a straight line and introduced such concepts as displacement, velocity, and acceleration.
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Two-Dimensional Kinematics dealt with motion in two dimensions. Projectile motion is a special case of two-dimensional
kinematics in which the object is projected into the air, while being subject to the gravitational force, and lands a distance away.
In this chapter, we consider situations where the object does not land but moves in a curve. We begin the study of uniform
circular motion by defining two angular quantities needed to describe rotational motion.

Rotation Angle

When objects rotate about some axis—for example, when the CD (compact disc) in Figure 6.2 rotates about its center—each
point in the object follows a circular arc. Consider a line from the center of the CD to its edge. Each pit used to record sound
along this line moves through the same angle in the same amount of time. The rotation angle is the amount of rotation and is
analogous to linear distance. We define the rotation angle A6 to be the ratio of the arc length to the radius of curvature:

AD = % (6.1)

Figure 6.2 All points on a CD travel in circular arcs. The pits along a line from the center to the edge all move through the same angle A# in a time

At .

B
As

[ T

Figure 6.3 The radius of a circle is rotated through an angle A@ . The arc length AS is described on the circumference.

The arc length As is the distance traveled along a circular path as shown in Figure 6.3 Note that r is the radius of curvature
of the circular path.

We know that for one complete revolution, the arc length is the circumference of a circle of radius r . The circumference of a
circle is 2ztr . Thus for one complete revolution the rotation angle is

AQ = 2nr =21 (6-2)
= .
This result is the basis for defining the units used to measure rotation angles, A@ to be radians (rad), defined so that
2x rad = 1 revolution. (6.3)

A comparison of some useful angles expressed in both degrees and radians is shown in Table 6.1.
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Table 6.1 Comparison of Angular Units

30° €
60° 3
90° Z
120° rs
135° 3z
180° %
g

Figure 6.4 Points 1 and 2 rotate through the same angle ( A@ ), but point 2 moves through a greater arc length (As) because it is at a greater

distance from the center of rotation (7).

If A@ = 2x rad, then the CD has made one complete revolution, and every point on the CD is back at its original position.
Because there are 360° in a circle or one revolution, the relationship between radians and degrees is thus

2z rad = 360° (6.4)
so that

1 rad = 300° 573, (6.5)
2n

Angular Velocity

How fast is an object rotating? We define angular velocity @ as the rate of change of an angle. In symbols, this is

_ A0 (6.6)

@ = £
At

where an angular rotation A# takes place in atime Af. The greater the rotation angle in a given amount of time, the greater
the angular velocity. The units for angular velocity are radians per second (rad/s).

Angular velocity @ is analogous to linear velocity v . To get the precise relationship between angular and linear velocity, we
again consider a pit on the rotating CD. This pit moves an arc length As in atime Af, and so it has a linear velocity

As (6.7)

y=-2

At
From A6 = % we see that As = rA@ . Substituting this into the expression for v gives

V= M = ra. (68)

This OpenStax book is available for free at http://cnx.org/content/col11844/1.14



Chapter 6 | Gravitation and Uniform Circular Motion 227

We write this relationship in two different ways and gain two different insights:

v=roorw="% (6.9)

The first relationship in v = rw or w = % states that the linear velocity v is proportional to the distance from the center of

rotation, thus, it is largest for a point on the rim (largest r ), as you might expect. We can also call this linear speed v of a point
v
r
moving car. Note that the speed of a point on the rim of the tire is the same as the speed v of the car. See Figure 6.5. So the
faster the car moves, the faster the tire spins—large v means alarge @, because v = rw . Similarly, a larger-radius tire

rotating at the same angular velocity ( @ ) will produce a greater linear speed ( v ) for the car.

on the rim the tangential speed. The second relationship in v = r@w or @ = - can be illustrated by considering the tire of a

Figure 6.5 A car moving at a velocity V to the right has a tire rotating with an angular velocity @ .The speed of the tread of the tire relative to the axle
is v, the same as if the car were jacked up. Thus the car moves forward at linear velocity V = r@ , where 1 is the tire radius. A larger angular
velocity for the tire means a greater velocity for the car.

Example 6.1 How Fast Does a Car Tire Spin?

Calculate the angular velocity of a 0.300 m radius car tire when the car travels at 15.0 m/s (about 54 km/h). See Figure
6.5.

Strategy

Because the linear speed of the tire rim is the same as the speed of the car, we have v = 15.0 m/s. The radius of the tire
is given to be r = 0.300 m. Knowing v and r, we can use the second relationship in v = ro, @ = % to calculate the
angular velocity.

Solution

To calculate the angular velocity, we will use the following relationship:

" 1
o=1 (610)

Substituting the knowns,

o = WO — 50,0 rags. (6.11)

0.300 m

Discussion

When we cancel units in the above calculation, we get 50.0/s. But the angular velocity must have units of rad/s. Because
radians are actually unitless (radians are defined as a ratio of distance), we can simply insert them into the answer for the
angular velocity. Also note that if an earth mover with much larger tires, say 1.20 m in radius, were moving at the same
speed of 15.0 m/s, its tires would rotate more slowly. They would have an angular velocity

o = (15.0 m/s)/(1.20 m) = 12.5 rad/s. (6.12)

Both @ and v have directions (hence they are angular and linear velocities, respectively). Angular velocity has only two
directions with respect to the axis of rotation—it is either clockwise or counterclockwise. Linear velocity is tangent to the path, as
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illustrated in Figure 6.6.

Take-Home Experiment

Tie an object to the end of a string and swing it around in a horizontal circle above your head (swing at your wrist). Maintain
uniform speed as the object swings and measure the angular velocity of the motion. What is the approximate speed of the
object? Identify a point close to your hand and take appropriate measurements to calculate the linear speed at this point.
Identify other circular motions and measure their angular velocities.

Figure 6.6 As an object moves in a circle, here a fly on the edge of an old-fashioned vinyl record, its instantaneous velocity is always tangent to the
circle. The direction of the angular velocity is clockwise in this case.

PhET Explorations: Ladybug Revolution

PhET Interactive Simulation

Figure 6.7 Ladybug Revolution (http:/icnx.org/content/m54992/1.2/rotation_en.jar)

Join the ladybug in an exploration of rotational motion. Rotate the merry-go-round to change its angle, or choose a constant
angular velocity or angular acceleration. Explore how circular motion relates to the bug's x,y position, velocity, and
acceleration using vectors or graphs.

6.2 Centripetal Acceleration

Learning Objectives

By the end of this section, you will be able to:

» Establish the expression for centripetal acceleration.
» Explain the centrifuge.

We know from kinematics that acceleration is a change in velocity, either in its magnitude or in its direction, or both. In uniform
circular motion, the direction of the velocity changes constantly, so there is always an associated acceleration, even though the
magnitude of the velocity might be constant. You experience this acceleration yourself when you turn a corner in your car. (If you
hold the wheel steady during a turn and move at constant speed, you are in uniform circular motion.) What you notice is a
sideways acceleration because you and the car are changing direction. The sharper the curve and the greater your speed, the
more noticeable this acceleration will become. In this section we examine the direction and magnitude of that acceleration.

Figure 6.8 shows an object moving in a circular path at constant speed. The direction of the instantaneous velocity is shown at
two points along the path. Acceleration is in the direction of the change in velocity, which points directly toward the center of
rotation (the center of the circular path). This pointing is shown with the vector diagram in the figure. We call the acceleration of
an object moving in uniform circular motion (resulting from a net external force) the centripetal acceleration( a ); centripetal

means “toward the center” or “center seeking.”

This OpenStax book is available for free at http://cnx.org/content/col11844/1.14


http://cnx.org/content/m54992/1.2/rotation_en.jar

Chapter 6 | Gravitation and Uniform Circular Motion 229

AV =V, — V,

Figure 6.8 The directions of the velocity of an object at two different points are shown, and the change in velocity AV is seento point directly toward

the center of curvature. (See small inset.) Because a; = Av/ At , the acceleration is also toward the center; a. is called centripetal acceleration.
(Because A0 is very small, the arc length As is equal to the chord length Ar for small time differences.)
The direction of centripetal acceleration is toward the center of curvature, but what is its magnitude? Note that the triangle

formed by the velocity vectors and the one formed by the radii # and As are similar. Both the triangles ABC and PQR are
isosceles triangles (two equal sides). The two equal sides of the velocity vector triangle are the speeds v; = v, = v. Using the

properties of two similar triangles, we obtain
Av _ As (6.13)

Av = YAs. (6.14)
Then we divide this by At , yielding
Av _ vy As (6.15)
At T At

Finally, noting that Av/ At = a. andthat As/At = v, the linear or tangential speed, we see that the magnitude of the
centripetal acceleration is
2 (6.16)

which is the acceleration of an object in a circle of radius r at a speed v . So, centripetal acceleration is greater at high speeds
and in sharp curves (smaller radius), as you have noticed when driving a car. But it is a bit surprising that a. is proportional to

speed squared, implying, for example, that it is four times as hard to take a curve at 100 km/h than at 50 km/h. A sharp corner
has a small radius, so that a. is greater for tighter turns, as you have probably noticed.
It is also useful to express a. in terms of angular velocity. Substituting v = r@ into the above expression, we find

ac = (ra))2/r = rw? . We can express the magnitude of centripetal acceleration using either of two equations:

2 (6.17)
ac= VT; ae = ro’.

Recall that the direction of a. is toward the center. You may use whichever expression is more convenient, as illustrated in

examples below.

A centrifuge (see Figure 6.9b) is a rotating device used to separate specimens of different densities. High centripetal
acceleration significantly decreases the time it takes for separation to occur, and makes separation possible with small samples.
Centrifuges are used in a variety of applications in science and medicine, including the separation of single cell suspensions
such as bacteria, viruses, and blood cells from a liquid medium and the separation of macromolecules, such as DNA and protein,
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from a solution. Centrifuges are often rated in terms of their centripetal acceleration relative to acceleration due to gravity (g);
maximum centripetal acceleration of several hundred thousand g is possible in a vacuum. Human centrifuges, extremely large
centrifuges, have been used to test the tolerance of astronauts to the effects of accelerations larger than that of Earth's gravity.

Example 6.2 How Does the Centripetal Acceleration of a Car Around a Curve Compare with Tha
Due to Gravity?

What is the magnitude of the centripetal acceleration of a car following a curve of radius 500 m at a speed of 25.0 m/s
(about 90 km/h)? Compare the acceleration with that due to gravity for this fairly gentle curve taken at highway speed. See
Figure 6.9(a).

Strategy

2 2

Because v and r are given, the first expression in a. = VT; a. = rw* is the most convenient to use.

Solution
Entering the given values of v = 25.0 m/s and » = 500 m into the first expression for a. gives
(6.18)

V2 _ (25.0 m/s)?

_ 2
=" 500m = 1.25 m/s~.

ac =

Discussion
To compare this with the acceleration due to gravity (g = 9.80 m/sz) , we take the ratio of
aclg= (1.25 m/sz)/(9.80 m/sz) = 0.128 . Thus, a. = 0.128 g and is noticeable especially if you were not wearing a

seat belt.
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Center of
rotation
r

(a) Car around corner

a |

Center of
rotation

(b) Centrifuge

Figure 6.9 (a) The car following a circular path at constant speed is accelerated perpendicular to its velocity, as shown. The magnitude of this
centripetal acceleration is found in Example 6.2. (b) A particle of mass in a centrifuge is rotating at constant angular velocity . It must be accelerated
perpendicular to its velocity or it would continue in a straight line. The magnitude of the necessary acceleration is found in Example 6.3.

Example 6.3 How Big Is the Centripetal Acceleration in an Ultracentrifuge?

Calculate the centripetal acceleration of a point 7.50 cm from the axis of an ultracentrifuge spinning at
7.5 x 10* rev/min. Determine the ratio of this acceleration to that due to gravity. See Figure 6.9(b).

Strategy

The term rev/min stands for revolutions per minute. By converting this to radians per second, we obtain the angular velocity
2
w . Because r is given, we can use the second expression in the equation a. = VT ac = r@? to calculate the

centripetal acceleration.
Solution

To convert 7.50x10* rev /min to radians per second, we use the facts that one revolution is 2rrad and one minute is
60.0 s. Thus,

w =7.50x10* L&y 2mrad, I min _ 7854 raqys, (6.19)
min~ 1rev " 60.0 s
. 2
Now the centripetal acceleration is given by the second expression in a. = VT; ac =rw”- as
a. = ro>. (6.20)
Converting 7.50 cm to meters and substituting known values gives
a. = (0.0750 m)(7854 rad/s)® = 4.63x10° m/s2. (6.21)
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Note that the unitless radians are discarded in order to get the correct units for centripetal acceleration. Taking the ratio of
ac to g yields

ac _ 4.63x10° _ 4 755105 (6.22)
—£ =228 = 472%x10°.
8 9.80

Discussion

This last result means that the centripetal acceleration is 472,000 times as strong as g . It is no wonder that such high @

centrifuges are called ultracentrifuges. The extremely large accelerations involved greatly decrease the time needed to
cause the sedimentation of blood cells or other materials.

Of course, a net external force is needed to cause any acceleration, just as Newton proposed in his second law of motion. So a
net external force is needed to cause a centripetal acceleration. In Centripetal Force, we will consider the forces involved in
circular motion.

PhET Explorations: Ladybug Motion 2D

Learn about position, velocity and acceleration vectors. Move the ladybug by setting the position, velocity or acceleration,
and see how the vectors change. Choose linear, circular or elliptical motion, and record and playback the motion to analyze
the behavior.

PhET Interactive Simulation

Figure 6.10 Ladybug Motion 2D (http://chx.org/content/m54995/1.3/ladybug-motion-2d_en.jar)

6.3 Centripetal Force

Learning Objectives

By the end of this section, you will be able to:

» Calculate coefficient of friction on a car tire.
» Calculate ideal speed and angle of a car on a turn.

Any force or combination of forces can cause a centripetal or radial acceleration. Just a few examples are the tension in the rope
on a tether ball, the force of Earth's gravity on the Moon, friction between roller skates and a rink floor, a banked roadway's force
on a car, and forces on the tube of a spinning centrifuge.

Any net force causing uniform circular motion is called a centripetal force. The direction of a centripetal force is toward the
center of curvature, the same as the direction of centripetal acceleration. According to Newton's second law of motion, net force
is mass times acceleration: net F = ma . For uniform circular motion, the acceleration is the centripetal acceleration— a = a.. .

Thus, the magnitude of centripetal force F. is

F. = ma.. (6.23)

2
By using the expressions for centripetal acceleration a. from a, = VT; ac = ra)2 , We get two expressions for the centripetal
force F. in terms of mass, velocity, angular velocity, and radius of curvature:

) (6.24)

F.= F.=mrw”.

o,

7
You may use whichever expression for centripetal force is more convenient. Centripetal force F is always perpendicular to the
path and pointing to the center of curvature, because a. is perpendicular to the velocity and pointing to the center of curvature.

Note that if you solve the first expression for r, you get
2 (6.25)
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This implies that for a given mass and velocity, a large centripetal force causes a small radius of curvature—that is, a tight curve.

Path v &

f = F_.is parallel to a. since F. = ma,

Qo

Figure 6.11 The frictional force supplies the centripetal force and is numerically equal to it. Centripetal force is perpendicular to velocity and causes
uniform circular motion. The larger the FC , the smaller the radius of curvature r and the sharper the curve. The second curve has the same Vv, but

alarger F. produces a smaller 7.

Example 6.4 What Coefficient of Friction Do Car Tires Need on a Flat Curve?

(a) Calculate the centripetal force exerted on a 900 kg car that negotiates a 500 m radius curve at 25.0 m/s.

(b) Assuming an unbanked curve, find the minimum static coefficient of friction, between the tires and the road, static friction
being the reason that keeps the car from slipping (see Figure 6.12).

Strategy and Solution for (a)

2
We know that F, = % . Thus,
mv? _ (900 kg)(25.0 m/s)* (6.26)

Fo=1 G0 = 1125N.

Strategy for (b)

Figure 6.12 shows the forces acting on the car on an unbanked (level ground) curve. Friction is to the left, keeping the car
from slipping, and because it is the only horizontal force acting on the car, the friction is the centripetal force in this case. We
know that the maximum static friction (at which the tires roll but do not slip) is usN , where g is the static coefficient of

friction and N is the normal force. The normal force equals the car's weight on level ground, so that N = mg . Thus the
centripetal force in this situation is
Fe=f=uN = ugmg. (6:27)

Now we have a relationship between centripetal force and the coefficient of friction. Using the first expression for F'. from
the equation

5 (6.28)
v
FC = mT 3
F.= mra?
2 (6.29)

We solve this for ug, noting that mass cancels, and obtain
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v2 (6.30)
Hs = 7g-
Solution for (b)
Substituting the knowns,
2 (6.31)
(25.0 m/s) —0.13.

57 (500 m)(9.80 m/s2)

(Because coefficients of friction are approximate, the answer is given to only two digits.)

Discussion
v2
We could also solve part (a) using the first expression in Fo= M7= & because m, v, and r are given. The coefficient
F.= mra?

of friction found in part (b) is much smaller than is typically found between tires and roads. The car will still negotiate the
curve if the coefficient is greater than 0.13, because static friction is a responsive force, being able to assume a value less
than but no more than g N . A higher coefficient would also allow the car to negotiate the curve at a higher speed, but if the

coefficient of friction is less, the safe speed would be less than 25 m/s. Note that mass cancels, implying that in this
example, it does not matter how heavily loaded the car is to negotiate the turn. Mass cancels because friction is assumed
proportional to the normal force, which in turn is proportional to mass. If the surface of the road were banked, the normal
force would be less as will be discussed below.

Free-body
diagram

Figure 6.12 This car on level ground is moving away and turning to the left. The centripetal force causing the car to turn in a circular path is due to
friction between the tires and the road. A minimum coefficient of friction is needed, or the car will move in a larger-radius curve and leave the roadway.

Let us now consider banked curves, where the slope of the road helps you negotiate the curve. See Figure 6.13. The greater
the angle @, the faster you can take the curve. Race tracks for bikes as well as cars, for example, often have steeply banked
curves. In an “ideally banked curve,” the angle @ is such that you can negotiate the curve at a certain speed without the aid of
friction between the tires and the road. We will derive an expression for @ for an ideally banked curve and consider an example
related to it.

For ideal banking, the net external force equals the horizontal centripetal force in the absence of friction. The components of the
normal force N in the horizontal and vertical directions must equal the centripetal force and the weight of the car, respectively. In
cases in which forces are not parallel, it is most convenient to consider components along perpendicular axes—in this case, the
vertical and horizontal directions.

Figure 6.13 shows a free body diagram for a car on a frictionless banked curve. If the angle 0 is ideal for the speed and radius,
then the net external force will equal the necessary centripetal force. The only two external forces acting on the car are its weight
w and the normal force of the road N . (A frictionless surface can only exert a force perpendicular to the surface—that is, a
normal force.) These two forces must add to give a net external force that is horizontal toward the center of curvature and has

magnitude mv 2 /r . Because this is the crucial force and it is horizontal, we use a coordinate system with vertical and horizontal
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axes. Only the normal force has a horizontal component, and so this must equal the centripetal force—that is,
. 2 (6.32)
N sin = L,

Because the car does not leave the surface of the road, the net vertical force must be zero, meaning that the vertical
components of the two external forces must be equal in magnitude and opposite in direction. From the figure, we see that the
vertical component of the normal force is N cos @, and the only other vertical force is the car's weight. These must be equal in

magnitude; thus,
N cos 0 = mg. (6.33)

Now we can combine the last two equations to eliminate N and get an expression for @, as desired. Solving the second
equation for N = mg/(cos ), and substituting this into the first yields

: 2 (6.34)
sinf _ my
M8cosh T
2 6.35
mg tan(d) = - (6.35)
2
_ W
tan0 = ?

Taking the inverse tangent gives

2 6.36
0= tan_l(‘,f—g) (ideally banked curve, no friction). (6.30)

This expression can be understood by considering how & depends on v and r. A large 6 will be obtained for a large v and a
small r. Thatis, roads must be steeply banked for high speeds and sharp curves. Friction helps, because it allows you to take
the curve at greater or lower speed than if the curve is frictionless. Note that @ does not depend on the mass of the vehicle.

Ncosf =w

Nsin6 = Fe
= Fhet

Figure 6.13 The car on this banked curve is moving away and turning to the left.

Example 6.5 What Is the Ideal Speed to Take a Steeply Banked Tight Curve?

Curves on some test tracks and race courses, such as the Daytona International Speedway in Florida, are very steeply
banked. This banking, with the aid of tire friction and very stable car configurations, allows the curves to be taken at very
high speed. To illustrate, calculate the speed at which a 100 m radius curve banked at 65.0° should be driven if the road is
frictionless.

Strategy

We first note that all terms in the expression for the ideal angle of a banked curve except for speed are known; thus, we
need only rearrange it so that speed appears on the left-hand side and then substitute known quantities.

Solution
Starting with
2 (6.37)

_Y
tan@—ﬁ

we get
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v = (rg tan 6)1/2. (6.38)

Noting that tan 65.0° = 2.14, we obtain
(6.39)

<
I

1/2
[(100 m)(9.80 m/s?)(2.14) |
45.8 mis.

Discussion

This is just about 165 km/h, consistent with a very steeply banked and rather sharp curve. Tire friction enables a vehicle to
take the curve at significantly higher speeds.

Calculations similar to those in the preceding examples can be performed for a host of interesting situations in which
centripetal force is involved—a number of these are presented in this chapter's Problems and Exercises.

Take-Home Experiment

Ask a friend or relative to swing a golf club or a tennis racquet. Take appropriate measurements to estimate the centripetal
acceleration of the end of the club or racquet. You may choose to do this in slow motion.

PhET Explorations: Gravity and Orbits

Move the sun, earth, moon and space station to see how it affects their gravitational forces and orbital paths. Visualize the
sizes and distances between different heavenly bodies, and turn off gravity to see what would happen without it!

PhET Interactive Simulation

Figure 6.14 Gravity and Orbits (http://cnx.org/content/m55002/1.2/gravity-and-orbits_en.jar)

6.4 Fictitious Forces and Non-inertial Frames: The Coriolis Force

Learning Objectives

By the end of this section, you will be able to:

» Discuss the inertial frame of reference.
» Discuss the non-inertial frame of reference.
« Describe the effects of the Coriolis force.

What do taking off in a jet airplane, turning a corner in a car, riding a merry-go-round, and the circular motion of a tropical cyclone
have in common? Each exhibits fictitious forces—unreal forces that arise from motion and may seem real, because the
observer’s frame of reference is accelerating or rotating.

When taking off in a jet, most people would agree it feels as if you are being pushed back into the seat as the airplane
accelerates down the runway. Yet a physicist would say that you tend to remain stationary while the seat pushes forward on you,
and there is no real force backward on you. An even more common experience occurs when you make a tight curve in your
car—say, to the right. You feel as if you are thrown (that is, forced) toward the left relative to the car. Again, a physicist would say
that you are going in a straight line but the car moves to the right, and there is no real force on you to the left. Recall Newton’s
first law.

This OpenStax book is available for free at http://cnx.org/content/col11844/1.14
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Flicl

Factual

(@) (b)
Figure 6.15 (a) The car driver feels herself forced to the left relative to the car when she makes a right turn. This is a fictitious force arising from the
use of the car as a frame of reference. (b) In the Earth’s frame of reference, the driver moves in a straight line, obeying Newton'’s first law, and the car
moves to the right. There is no real force to the left on the driver relative to Earth. There is a real force to the right on the car to make it turn.

We can reconcile these points of view by examining the frames of reference used. Let us concentrate on people in a car.
Passengers instinctively use the car as a frame of reference, while a physicist uses Earth. The physicist chooses Earth because
it is very nearly an inertial frame of reference—one in which all forces are real (that is, in which all forces have an identifiable
physical origin). In such a frame of reference, Newton’s laws of motion take the form given in Dynamics: Newton's Laws of
Motion The car is a non-inertial frame of reference because it is accelerated to the side. The force to the left sensed by car
passengers is a fictitious force having no physical origin. There is nothing real pushing them left—the car, as well as the driver,
is actually accelerating to the right.

Let us now take a mental ride on a merry-go-round—specifically, a rapidly rotating playground merry-go-round. You take the
merry-go-round to be your frame of reference because you rotate together. In that non-inertial frame, you feel a fictitious force,
named centrifugal force (not to be confused with centripetal force), trying to throw you off. You must hang on tightly to
counteract the centrifugal force. In Earth’s frame of reference, there is no force trying to throw you off. Rather you must hang on
to make yourself go in a circle because otherwise you would go in a straight line, right off the merry-go-round.

]

net = Fcemripeml I

ict — ¥ centrifugal

1

Merry-go-round’s rotating frame of reference Inertial frame of reference

(@) (b)
Figure 6.16 (a) A rider on a merry-go-round feels as if he is being thrown off. This fictitious force is called the centrifugal force—it explains the rider’s
motion in the rotating frame of reference. (b) In an inertial frame of reference and according to Newton’s laws, it is his inertia that carries him off and not

a real force (the unshaded rider has Fnet =0 and headsin a straight line). A real force, Fcentripetal , Is needed to cause a circular path.

This inertial effect, carrying you away from the center of rotation if there is no centripetal force to cause circular motion, is put to
good use in centrifuges (see Figure 6.17). A centrifuge spins a sample very rapidly, as mentioned earlier in this chapter. Viewed
from the rotating frame of reference, the fictitious centrifugal force throws particles outward, hastening their sedimentation. The
greater the angular velocity, the greater the centrifugal force. But what really happens is that the inertia of the particles carries
them along a line tangent to the circle while the test tube is forced in a circular path by a centripetal force.
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centrifugal
force
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inertial
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Particle continues to left

as test tube moves up. ac

Therefore particle moves

down in tube by virtue of

its inertia.
Figure 6.17 Centrifuges use inertia to perform their task. Particles in the fluid sediment come out because their inertia carries them away from the
center of rotation. The large angular velocity of the centrifuge quickens the sedimentation. Ultimately, the particles will come into contact with the test
tube walls, which will then supply the centripetal force needed to make them move in a circle of constant radius.

Let us now consider what happens if something moves in a frame of reference that rotates. For example, what if you slide a ball
directly away from the center of the merry-go-round, as shown in Figure 6.18? The ball follows a straight path relative to Earth
(assuming negligible friction) and a path curved to the right on the merry-go-round’s surface. A person standing next to the
merry-go-round sees the ball moving straight and the merry-go-round rotating underneath it. In the merry-go-round’s frame of
reference, we explain the apparent curve to the right by using a fictitious force, called the Coriolis force, that causes the ball to
curve to the right. The fictitious Coriolis force can be used by anyone in that frame of reference to explain why objects follow
curved paths and allows us to apply Newton’s Laws in non-inertial frames of reference.

Path relative to

._/-M the earth

(@)
é‘*
ﬁ,? [ Path relative to
[ . B /the merry-go-round
A"
A B
——/a}’/
(b)

Figure 6.18 Looking down on the counterclockwise rotation of a merry-go-round, we see that a ball slid straight toward the edge follows a path curved
to the right. The person slides the ball toward point B, starting at point A. Both points rotate to the shaded positions (A’ and B’) shown in the time that
the ball follows the curved path in the rotating frame and a straight path in Earth’s frame.

Up until now, we have considered Earth to be an inertial frame of reference with little or no worry about effects due to its rotation.
Yet such effects do exist—in the rotation of weather systems, for example. Most consequences of Earth’s rotation can be

qualitatively understood by analogy with the merry-go-round. Viewed from above the North Pole, Earth rotates counterclockwise,
as does the merry-go-round in Figure 6.18. As on the merry-go-round, any motion in Earth’s northern hemisphere experiences a
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Coriolis force to the right. Just the opposite occurs in the southern hemisphere; there, the force is to the left. Because Earth’s
angular velocity is small, the Coriolis force is usually negligible, but for large-scale motions, such as wind patterns, it has
substantial effects.

The Coriolis force causes hurricanes in the northern hemisphere to rotate in the counterclockwise direction, while the tropical
cyclones (what hurricanes are called below the equator) in the southern hemisphere rotate in the clockwise direction. The terms
hurricane, typhoon, and tropical storm are regionally-specific names for tropical cyclones, storm systems characterized by low
pressure centers, strong winds, and heavy rains. Figure 6.19 helps show how these rotations take place. Air flows toward any
region of low pressure, and tropical cyclones contain particularly low pressures. Thus winds flow toward the center of a tropical
cyclone or a low-pressure weather system at the surface. In the northern hemisphere, these inward winds are deflected to the
right, as shown in the figure, producing a counterclockwise circulation at the surface for low-pressure zones of any type. Low
pressure at the surface is associated with rising air, which also produces cooling and cloud formation, making low-pressure
patterns quite visible from space. Conversely, wind circulation around high-pressure zones is clockwise in the northern
hemisphere but is less visible because high pressure is associated with sinking air, producing clear skies.

The rotation of tropical cyclones and the path of a ball on a merry-go-round can just as well be explained by inertia and the
rotation of the system underneath. When non-inertial frames are used, fictitious forces, such as the Coriolis force, must be
invented to explain the curved path. There is no identifiable physical source for these fictitious forces. In an inertial frame, inertia
explains the path, and no force is found to be without an identifiable source. Either view allows us to describe nature, but a view
in an inertial frame is the simplest and truest, in the sense that all forces have real origins and explanations.

Figure 6.19 (a) The counterclockwise rotation of this northern hemisphere hurricane is a major consequence of the Coriolis force. (credit: NASA) (b)
Without the Coriolis force, air would flow straight into a low-pressure zone, such as that found in tropical cyclones. (c) The Coriolis force deflects the
winds to the right, producing a counterclockwise rotation. (d) Wind flowing away from a high-pressure zone is also deflected to the right, producing a
clockwise rotation. (e) The opposite direction of rotation is produced by the Coriolis force in the southern hemisphere, leading to tropical cyclones.
(credit: NASA)

6.5 Newton's Universal Law of Gravitation

Learning Objectives

By the end of this section, you will be able to:

« Explain Earth's gravitational force.

« Describe the gravitational effect of the Moon on Earth.
« Discuss weightlessness in space.

¢ Understand the Cavendish experiment.

The information presented in this section supports the following AP® learning objectives and science practices:

* 2.B.2.1 The student is able to apply g = G_];/I to calculate the gravitational field due to an object with mass M, where
r

the field is a vector directed toward the center of the object of mass M. (S.P. 2.2)

* 2.B.2.2 The student is able to approximate a numerical value of the gravitational field (g) near the surface of an object
from its radius and mass relative to those of the Earth or other reference objects. (S.P. 2.2)

* 3.A.3.4. The student is able to make claims about the force on an object due to the presence of other objects with the
same property: mass, electric charge. (S.P. 6.1, 6.4)
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What do aching feet, a falling apple, and the orbit of the Moon have in common? Each is caused by the gravitational force. Our
feet are strained by supporting our weight—the force of Earth's gravity on us. An apple falls from a tree because of the same
force acting a few meters above Earth's surface. And the Moon orbits Earth because gravity is able to supply the necessary
centripetal force at a distance of hundreds of millions of meters. In fact, the same force causes planets to orbit the Sun, stars to
orbit the center of the galaxy, and galaxies to cluster together. Gravity is another example of underlying simplicity in nature. It is
the weakest of the four basic forces found in nature, and in some ways the least understood. It is a force that acts at a distance,
without physical contact, and is expressed by a formula that is valid everywhere in the universe, for masses and distances that
vary from the tiny to the immense.

Sir Isaac Newton was the first scientist to precisely define the gravitational force, and to show that it could explain both falling
bodies and astronomical motions. See Figure 6.20. But Newton was not the first to suspect that the same force caused both our
weight and the motion of planets. His forerunner Galileo Galilei had contended that falling bodies and planetary motions had the
same cause. Some of Newton's contemporaries, such as Robert Hooke, Christopher Wren, and Edmund Halley, had also made
some progress toward understanding gravitation. But Newton was the first to propose an exact mathematical form and to use
that form to show that the motion of heavenly bodies should be conic sections—circles, ellipses, parabolas, and hyperbolas. This
theoretical prediction was a major triumph—it had been known for some time that moons, planets, and comets follow such paths,
but no one had been able to propose a mechanism that caused them to follow these paths and not others. This was one of the
earliest examples of a theory derived from empirical evidence doing more than merely describing those empirical results; it made
claims about the fundamental workings of the universe.

Figure 6.20 According to early accounts, Newton was inspired to make the connection between falling bodies and astronomical motions when he saw
an apple fall from a tree and realized that if the gravitational force could extend above the ground to a tree, it might also reach the Sun. The inspiration
of Newton's apple is a part of worldwide folklore and may even be based in fact. Great importance is attached to it because Newton's universal law of
gravitation and his laws of motion answered very old questions about nature and gave tremendous support to the notion of underlying simplicity and
unity in nature. Scientists still expect underlying simplicity to emerge from their ongoing inquiries into nature.

The gravitational force is relatively simple. It is always attractive, and it depends only on the masses involved and the distance
between them. Stated in modern language, Newton's universal law of gravitation states that every particle in the universe
attracts every other particle with a force along a line joining them. The force is directly proportional to the product of their masses
and inversely proportional to the square of the distance between them.
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CM

Figure 6.21 Gravitational attraction is along a line joining the centers of mass of these two bodies. The magnitude of the force is the same on each,
consistent with Newton's third law.
Misconception Alert

The magnitude of the force on each object (one has larger mass than the other) is the same, consistent with Newton's third
law.

The bodies we are dealing with tend to be large. To simplify the situation we assume that the body acts as if its entire mass is
concentrated at one specific point called the center of mass (CM), which will be further explored in Linear Momentum and
Collisions. For two bodies having masses m and M with a distance r between their centers of mass, the equation for

Newton's universal law of gravitation is
F=cuM (6.40)
2 b

where F' is the magnitude of the gravitational force and G is a proportionality factor called the gravitational constant. G is a

universal gravitational constant—that is, it is thought to be the same everywhere in the universe. It has been measured
experimentally to be
_ a2 (6.41)
G = 6.673x10~ 11 Nm-
kg

in Sl units. Note that the units of G are such that a force in newtons is obtained from F = G% , when considering masses in
r

kilograms and distance in meters. For example, two 1.000 kg masses separated by 1.000 m will experience a gravitational
attraction of 6.673x10™ ' N. Thisis an extraordinarily small force. The small magnitude of the gravitational force is consistent
with everyday experience. We are unaware that even large objects like mountains exert gravitational forces on us. In fact, our

body weight is the force of attraction of the entire Earth on us with a mass of 6X 1024 kg .

The experiment to measure G was first performed by Cavendish, and is explained in more detail later. The fundamental concept
it is based on is having a known mass on a spring with a known force (or spring) constant. Then, a second known mass is placed
at multiple known distances from the first, and the amount of stretch in the spring resulting from the gravitational attraction of the
two masses is measured.

Recall that the acceleration due to gravity g is about 9.80 m/s? on Earth. We can now determine why this is so. The weight of
an object mg is the gravitational force between it and Earth. Substituting mg for F' in Newton's universal law of gravitation gives
mg = GIUM. (6.42)

-

where m is the mass of the object, M is the mass of Earth, and r is the distance to the center of Earth (the distance between
the centers of mass of the object and Earth). See Figure 6.22. The mass m of the object cancels, leaving an equation for g :

¢=GM (6.43)
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Substituting known values for Earth's mass and radius (to three significant figures),

g= [6.67)(10_”N . mz]x 5.98x10%4 kg (6.44)
ke ) (6.38x10° m)%
and we obtain a value for the acceleration of a falling body:
g =9.80 m/s%. (6.45)

Figure 6.22 The distance between the centers of mass of Earth and an object on its surface is very nearly the same as the radius of Earth, because
Earth is so much larger than the object.

This is the expected value and is independent of the body's mass. Newton's law of gravitation takes Galileo's observation that all
masses fall with the same acceleration a step further, explaining the observation in terms of a force that causes objects to fall—in
fact, in terms of a universally existing force of attraction between masses.

Gravitational Mass and Inertial Mass

Notice that, in Equation 6.40, the mass of the objects under consideration is directly proportional to the gravitational force.
More mass means greater forces, and vice versa. However, we have already seen the concept of mass before in a different
context.

In Chapter 4, you read that mass is a measure of inertia. However, we normally measure the mass of an object by
measuring the force of gravity (F) on it.

How do we know that inertial mass is identical to gravitational mass? Assume that we compare the mass of two objects. The
objects have inertial masses mi1 and mo. If the objects balance each other on a pan balance, we can conclude that they
have the same gravitational mass, that is, that they experience the same force due to gravity, F. Using Newton's second law
of motion, F = ma, we can write m1 a1 = m2 az.

If we can show that the two objects experience the same acceleration due to gravity, we can conclude that m1 = mo, that is,
that the objects' inertial masses are equal.

In fact, Galileo and others conducted experiments to show that, when factors such as wind resistance are kept constant, all
objects, regardless of their mass, experience the same acceleration due to gravity. Galileo is famously said to have dropped
two balls of different masses off the leaning tower of Pisa to demonstrate this. The balls accelerated at the same rate. Since
acceleration due to gravity is constant for all objects on Earth, regardless of their mass or composition, i.e., a1 = a2, then m1
= m2. Thus, we can conclude that inertial mass is identical to gravitational mass. This allows us to calculate the acceleration
of free fall due to gravity, such as in the orbits of planets.

Take-Home Experiment

Take a marble, a ball, and a spoon and drop them from the same height. Do they hit the floor at the same time? If you drop a
piece of paper as well, does it behave like the other objects? Explain your observations.

Making Connections: Gravitation, Other Forces, and General Relativity

Attempts are still being made to understand the gravitational force. As we shall see in Particle Physics, modern physics is
exploring the connections of gravity to other forces, space, and time. General relativity alters our view of gravitation, leading
us to think of gravitation as bending space and time.

Applying the Science Practices: All Objects Have Gravitational Fields

GM
r2

We can use the formula developed above, g = , to calculate the gravitational fields of other objects.

For example, the Moon has a radius of 1.7 x 10% m and a mass of 7.3 x 10%? kg. The gravitational field on the surface of the
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Moon can be expressed as

M
§=G=
r2

0) 22
= |6.67x10- 11 N-m? |, 7-3X 107" kg
ng 6\
(1.7%10° m)

= 1.685m/s2

This is about 1/6 of the gravity on Earth, which seems reasonable, since the Moon has a much smaller mass than Earth
does.

A person has a mass of 50 kg. The gravitational field 1.0 m from the person's center of mass can be expressed as
g= G%
= [6.67><10—“ I‘I'—“gz]xso—kg2
kg” ) (1m)
=3.34x1077 m/s?

This is less than one millionth of the gravitational field at the surface of Earth.

In the following example, we make a comparison similar to one made by Newton himself. He noted that if the gravitational force
caused the Moon to orbit Earth, then the acceleration due to gravity should equal the centripetal acceleration of the Moon in its
orbit. Newton found that the two accelerations agreed “pretty nearly.”

Example 6.6 Earth's Gravitational Force Is the Centripetal Force Making the Moon Move in &

(a) Find the acceleration due to Earth's gravity at the distance of the Moon.

(b) Calculate the centripetal acceleration needed to keep the Moon in its orbit (assuming a circular orbit about a fixed Earth),
and compare it with the value of the acceleration due to Earth's gravity that you have just found.

Strategy for (a)

This calculation is the same as the one finding the acceleration due to gravity at Earth's surface, except that 7 is the
distance from the center of Earth to the center of the Moon. The radius of the Moon's nearly circular orbit is 3.84X 108 m.
Solution for (a)

Substituting known values into the expression for g found above, remembering that M is the mass of Earth not the Moon,

yields
) 24 (6.46)
g = ;Ag —l6.67%10-11N: gl e 5.98)(108 kg2
r kg (3.84x10% m)
= 2.70x107° m/s.?
Strategy for (b)
Centripetal acceleration can be calculated using either form of
2 (6.47)
ac = -
ac= ro?
We choose to use the second form:
ae = m)z’ (6.48)

where @ is the angular velocity of the Moon about Earth.

Solution for (b)
Given that the period (the time it takes to make one complete rotation) of the Moon's orbit is 27.3 days, (d) and using
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1 dx24hrygominy 60 S — 86400 s (6.49)
d hr min
we see that
=40 = @73 d%?sré%ﬁoo D) 2.66x10~°14d. (650
The centripetal acceleration is
ac = rw®=(3.84x10% m)(2.66x107° rad/s)? (6.51)

2.72x1073 m/s.2

The direction of the acceleration is toward the center of the Earth.

Discussion

The centripetal acceleration of the Moon found in (b) differs by less than 1% from the acceleration due to Earth's gravity
found in (a). This agreement is approximate because the Moon's orbit is slightly elliptical, and Earth is not stationary (rather
the Earth-Moon system rotates about its center of mass, which is located some 1700 km below Earth's surface). The clear
implication is that Earth's gravitational force causes the Moon to orbit Earth.

Why does Earth not remain stationary as the Moon orbits it? This is because, as expected from Newton's third law, if Earth exerts
a force on the Moon, then the Moon should exert an equal and opposite force on Earth (see Figure 6.23). We do not sense the
Moon's effect on Earth's motion, because the Moon's gravity moves our bodies right along with Earth but there are other signs on
Earth that clearly show the effect of the Moon's gravitational force as discussed in Satellites and Kepler's Laws: An Argument
for Simplicity.
Earth's path has
“wiggles” (exaggerated)

(not to scale)

Earth-moon center of mass
follows elliptical path

(a) (b)
Figure 6.23 (a) Earth and the Moon rotate approximately once a month around their common center of mass. (b) Their center of mass orbits the Sun in

an elliptical orbit, but Earth's path around the Sun has “wiggles” in it. Similar wiggles in the paths of stars have been observed and are considered
direct evidence of planets orbiting those stars. This is important because the planets' reflected light is often too dim to be observed.

Tides

Ocean tides are one very observable result of the Moon's gravity acting on Earth. Figure 6.24 is a simplified drawing of the
Moon's position relative to the tides. Because water easily flows on Earth's surface, a high tide is created on the side of Earth
nearest to the Moon, where the Moon's gravitational pull is strongest. Why is there also a high tide on the opposite side of Earth?
The answer is that Earth is pulled toward the Moon more than the water on the far side, because Earth is closer to the Moon. So
the water on the side of Earth closest to the Moon is pulled away from Earth, and Earth is pulled away from water on the far side.
As Earth rotates, the tidal bulge (an effect of the tidal forces between an orbiting natural satellite and the primary planet that it
orbits) keeps its orientation with the Moon. Thus there are two tides per day (the actual tidal period is about 12 hours and 25.2
minutes), because the Moon moves in its orbit each day as well).

Low tide

High [ [ Earth | |High

tide Vo /"‘ tide
T— Moon
Low tide (not to scale)

Figure 6.24 The Moon causes ocean tides by attracting the water on the near side more than Earth, and by attracting Earth more than the water on the
far side. The distances and sizes are not to scale. For this simplified representation of the Earth-Moon system, there are two high and two low tides per
day at any location, because Earth rotates under the tidal bulge.
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The Sun also affects tides, although it has about half the effect of the Moon. However, the largest tides, called spring tides, occur
when Earth, the Moon, and the Sun are aligned. The smallest tides, called neap tides, occur when the Sun is at a 90° angle to

the Earth-Moon alignment.
. Moon

spring tide (a)
Moon  spring tide (b)
neap tide (c)
S—
Moon

Figure 6.25 (a, b) Spring tides: The highest tides occur when Earth, the Moon, and the Sun are aligned. (c) Neap tide: The lowest tides occur when the
sun lies at 90° to the Earth-Moon alignment. Note that this figure is not drawn to scale.

Tides are not unique to Earth but occur in many astronomical systems. The most extreme tides occur where the gravitational
force is the strongest and varies most rapidly, such as near black holes (see Figure 6.26). A few likely candidates for black holes
have been observed in our galaxy. These have masses greater than the Sun but have diameters only a few kilometers across.
The tidal forces near them are so great that they can actually tear matter from a companion star.

Figure 6.26 A black hole is an object with such strong gravity that not even light can escape it. This black hole was created by the supernova of one
star in a two-star system. The tidal forces created by the black hole are so great that it tears matter from the companion star. This matter is
compressed and heated as it is sucked into the black hole, creating light and X-rays observable from Earth.

"Weightlessness” and Microgravity

In contrast to the tremendous gravitational force near black holes is the apparent gravitational field experienced by astronauts
orbiting Earth. What is the effect of “weightlessness” upon an astronaut who is in orbit for months? Or what about the effect of
weightlessness upon plant growth? Weightlessness doesn't mean that an astronaut is not being acted upon by the gravitational
force. There is no “zero gravity” in an astronaut's orbit. The term just means that the astronaut is in free-fall, accelerating with the
acceleration due to gravity. If an elevator cable breaks, the passengers inside will be in free fall and will experience
weightlessness. You can experience short periods of weightlessness in some rides in amusement parks.



246 Chapter 6 | Gravitation and Uniform Circular Motion

Figure 6.27 Astronauts experiencing weightlessness on board the International Space Station. (credit: NASA)

Microgravity refers to an environment in which the apparent net acceleration of a body is small compared with that produced by
Earth at its surface. Many interesting biology and physics topics have been studied over the past three decades in the presence
of microgravity. Of immediate concern is the effect on astronauts of extended times in outer space, such as at the International
Space Station. Researchers have observed that muscles will atrophy (waste away) in this environment. There is also a
corresponding loss of bone mass. Study continues on cardiovascular adaptation to space flight. On Earth, blood pressure is
usually higher in the feet than in the head, because the higher column of blood exerts a downward force on it, due to gravity.
When standing, 70% of your blood is below the level of the heart, while in a horizontal position, just the opposite occurs. What
difference does the absence of this pressure differential have upon the heart?

Some findings in human physiology in space can be clinically important to the management of diseases back on Earth. On a
somewhat negative note, spaceflight is known to affect the human immune system, possibly making the crew members more
vulnerable to infectious diseases. Experiments flown in space also have shown that some bacteria grow faster in microgravity
than they do on Earth. However, on a positive note, studies indicate that microbial antibiotic production can increase by a factor
of two in space-grown cultures. One hopes to be able to understand these mechanisms so that similar successes can be
achieved on the ground. In another area of physics space research, inorganic crystals and protein crystals have been grown in
outer space that have much higher quality than any grown on Earth, so crystallography studies on their structure can yield much
better results.

Plants have evolved with the stimulus of gravity and with gravity sensors. Roots grow downward and shoots grow upward. Plants
might be able to provide a life support system for long duration space missions by regenerating the atmosphere, purifying water,
and producing food. Some studies have indicated that plant growth and development are not affected by gravity, but there is still
uncertainty about structural changes in plants grown in a microgravity environment.

The Cavendish Experiment: Then and Now

As previously noted, the universal gravitational constant G is determined experimentally. This definition was first done
accurately by Henry Cavendish (1731-1810), an English scientist, in 1798, more than 100 years after Newton published his
universal law of gravitation. The measurement of G is very basic and important because it determines the strength of one of the
four forces in nature. Cavendish's experiment was very difficult because he measured the tiny gravitational attraction between
two ordinary-sized masses (tens of kilograms at most), using apparatus like that in Figure 6.28. Remarkably, his value for G
differs by less than 1% from the best modern value.

One important consequence of knowing G was that an accurate value for Earth's mass could finally be obtained. This was done
by measuring the acceleration due to gravity as accurately as possible and then calculating the mass of Earth M from the
relationship Newton's universal law of gravitation gives

mg = GIM (6.52)

where m is the mass of the object, M is the mass of Earth, and 7 is the distance to the center of Earth (the distance between
the centers of mass of the object and Earth). See Figure 6.21. The mass m of the object cancels, leaving an equation for g:

— oM (6.53)
8= (17
r
Rearranging to solve for M yields
" gr2 (6.54)
-G
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So M can be calculated because all quantities on the right, including the radius of Earth , are known from direct
measurements. We shall see in Satellites and Kepler's Laws: An Argument for Simplicity that knowing G also allows for the
determination of astronomical masses. Interestingly, of all the fundamental constants in physics, G is by far the least well
determined.

The Cavendish experiment is also used to explore other aspects of gravity. One of the most interesting questions is whether the
gravitational force depends on substance as well as mass—for example, whether one kilogram of lead exerts the same
gravitational pull as one kilogram of water. A Hungarian scientist named Roland von E6tvds pioneered this inquiry early in the
20th century. He found, with an accuracy of five parts per billion, that the gravitational force does not depend on the substance.
Such experiments continue today, and have improved upon E6tvés' measurements. Cavendish-type experiments such as those
of Eric Adelberger and others at the University of Washington, have also put severe limits on the possibility of a fifth force and
have verified a major prediction of general relativity—that gravitational energy contributes to rest mass. Ongoing measurements
there use a torsion balance and a parallel plate (not spheres, as Cavendish used) to examine how Newton's law of gravitation
works over sub-millimeter distances. On this small-scale, do gravitational effects depart from the inverse square law? So far, no
deviation has been observed.

Light
source

Figure 6.28 Cavendish used an apparatus like this to measure the gravitational attraction between the two suspended spheres ( 71 ) and the two on

the stand ( M ) by observing the amount of torsion (twisting) created in the fiber. Distance between the masses can be varied to check the
dependence of the force on distance. Modern experiments of this type continue to explore gravity.

6.6 Satellites and Kepler's Laws: An Argument for Simplicity

Learning Objectives

By the end of this section, you will be able to:

« State Kepler's laws of planetary motion.
« Derive Kepler's third law for circular orbits.
» Discuss the Ptolemaic model of the universe.

Examples of gravitational orbits abound. Hundreds of artificial satellites orbit Earth together with thousands of pieces of debris.
The Moon's orbit about Earth has intrigued humans from time immemorial. The orbits of planets, asteroids, meteors, and comets
about the Sun are no less interesting. If we look further, we see almost unimaginable numbers of stars, galaxies, and other
celestial objects orbiting one another and interacting through gravity.

All these motions are governed by gravitational force, and it is possible to describe them to various degrees of precision. Precise
descriptions of complex systems must be made with large computers. However, we can describe an important class of orbits
without the use of computers, and we shall find it instructive to study them. These orbits have the following characteristics:

1. Asmall mass m orbits a much larger mass M . This allows us to view the motion as if M were stationary—in fact, as if
from an inertial frame of reference placed on M —uwithout significant error. Mass m is the satellite of M , if the orbit is
gravitationally bound.

2. The system is isolated from other masses. This allows us to neglect any small effects due to outside masses.

The conditions are satisfied, to good approximation, by Earth's satellites (including the Moon), by objects orbiting the Sun, and by
the satellites of other planets. Historically, planets were studied first, and there is a classical set of three laws, called Kepler's
laws of planetary motion, that describe the orbits of all bodies satisfying the two previous conditions (not just planets in our solar
system). These descriptive laws are named for the German astronomer Johannes Kepler (1571-1630), who devised them after
careful study (over some 20 years) of a large amount of meticulously recorded observations of planetary motion done by Tycho
Brahe (1546—-1601). Such careful collection and detailed recording of methods and data are hallmarks of good science. Data
constitute the evidence from which new interpretations and meanings can be constructed.
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Kepler's Laws of Planetary Motion

Kepler's First Law

The orbit of each planet about the Sun is an ellipse with the Sun at one focus.
y

ﬂ/
i

()

m

Planet

(b)
Figure 6.29 (a) An ellipse is a closed curve such that the sum of the distances from a point on the curve to the two foci (f1 and f2 ) is a constant.

You can draw an ellipse as shown by putting a pin at each focus, and then placing a string around a pencil and the pins and tracing a line on paper. A
circle is a special case of an ellipse in which the two foci coincide (thus any point on the circle is the same distance from the center). (b) For any closed

gravitational orbit, 72 follows an elliptical path with M at one focus. Kepler's first law states this fact for planets orbiting the Sun.

Kepler's Second Law

Each planet moves so that an imaginary line drawn from the Sun to the planet sweeps out equal areas in equal times (see
Figure 6.30).

Kepler's Third Law

The ratio of the squares of the periods of any two planets about the Sun is equal to the ratio of the cubes of their average
distances from the Sun. In equation form, this is

T2 3 (6.55)
Pl
Ty r;

where T is the period (time for one orbit) and r is the average radius. This equation is valid only for comparing two small

masses orbiting the same large one. Most importantly, this is a descriptive equation only, giving no information as to the cause of
the equality.
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Planet

C ' D

Figure 6.30 The shaded regions have equal areas. It takes equal times for 71 to go from A to B, from C to D, and from E to F. The mass 71 moves

fastest when it is closest to M . Kepler's second law was originally devised for planets orbiting the Sun, but it has broader validity.

Note again that while, for historical reasons, Kepler's laws are stated for planets orbiting the Sun, they are actually valid for all
bodies satisfying the two previously stated conditions.

Example 6.7 Find the Time for One Orbit of an Earth Satellite

Given that the Moon orbits Earth each 27.3 d and that it is an average distance of 3.84X 108 m from the center of Earth,
calculate the period of an artificial satellite orbiting at an average altitude of 1500 km above Earth's surface.
Strategy
The period, or time for one orbit, is related to the radius of the orbit by Kepler's third law, given in mathematical form in

2 3
T r
—12 = —13 . Let us use the subscript 1 for the Moon and the subscript 2 for the satellite. We are asked to find 7, . The
Iy s
given information tells us that the orbital radius of the Moon is r| = 3.84x10% m, and that the period of the Moon is
T, = 27.3 d. The height of the artificial satellite above Earth's surface is given, and so we must add the radius of Earth

(6380 km) to get r, = (1500 + 6380) km = 7880 km . Now all quantities are known, and so 7', can be found.

Solution
Kepler's third law is
T2 (6.56)

To solve for T , we cross-multiply and take the square root, yielding

3 (6.57)

2_ 722

77 =T7(7)
3/2 (6.58)

7
n=1(3)
Substituting known values yields
3/2 (6.59)
T, = 273 dx24.0hx( 7880 ki )
d "\3.84%10° km

1.93 h.

Discussion This is a reasonable period for a satellite in a fairly low orbit. It is interesting that any satellite at this altitude will
orbit in the same amount of time. This fact is related to the condition that the satellite's mass is small compared with that of
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Earth.

People immediately search for deeper meaning when broadly applicable laws, like Kepler's, are discovered. It was Newton who
took the next giant step when he proposed the law of universal gravitation. While Kepler was able to discover what was
happening, Newton discovered that gravitational force was the cause.

Derivation of Kepler's Third Law for Circular Orbits

We shall derive Kepler's third law, starting with Newton's laws of motion and his universal law of gravitation. The point is to
demonstrate that the force of gravity is the cause for Kepler's laws (although we will only derive the third one).

Let us consider a circular orbit of a small mass m around a large mass M , satisfying the two conditions stated at the beginning
of this section. Gravity supplies the centripetal force to mass m . Starting with Newton's second law applied to circular motion,

2 (6.60)
Fpet = mag = mr—.

The net external force on mass m is gravity, and so we substitute the force of gravity for F e :

2 (6.61)
mM _ v
G—2 = mT
r
The mass m cancels, yielding
M _ 2 (6.62)
GT =V

The fact that m cancels out is another aspect of the oft-noted fact that at a given location all masses fall with the same
acceleration. Here we see that at a given orbital radius 7, all masses orbit at the same speed. (This was implied by the result of
the preceding worked example.) Now, to get at Kepler's third law, we must get the period 7T into the equation. By definition,
period T is the time for one complete orbit. Now the average speed v is the circumference divided by the period—that is,

y = 2ar (6.63)
T
Substituting this into the previous equation gives
GM _ 4x?? (6.64)
=T
T
Solving for T2 yields
2 (6.65)
2 _4n~ 3
T = GMr .

Using subscripts 1 and 2 to denote two different satellites, and taking the ratio of the last equation for satellite 1 to satellite 2
yields

e (6.66)
T72-.3
Iy

This is Kepler's third law. Note that Kepler's third law is valid only for comparing satellites of the same parent body, because only
then does the mass of the parent body M cancel.

2
Now consider what we get if we solve T? = éLMr3 for the ratio 7> /T2 . We obtain a relationship that can be used to
determine the mass M of a parent body from the orbits of its satellites:
r_3 _G M (6.67)
T2  4n?

If r and T are known for a satellite, then the mass M of the parent can be calculated. This principle has been used
extensively to find the masses of heavenly bodies that have satellites. Furthermore, the ratio 3/ T? should be a constant for all

satellites of the same parent body (because r31T? = GM 1 47 ). (See Table 6.2).

Itis clear from Table 6.2 that the ratio of - / T? is constant, at least to the third digit, for all listed satellites of the Sun, and for
those of Jupiter. Small variations in that ratio have two causes—uncertainties in the » and T data, and perturbations of the
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orbits due to other bodies. Interestingly, those perturbations can be—and have been—used to predict the location of new planets
and moons. This is another verification of Newton's universal law of gravitation.

Making Connections: General Relativity and Mercury

Newton's universal law of gravitation is modified by Einstein's general theory of relativity, as we shall see in Particle
Physics. Newton's gravity is not seriously in error—it was and still is an extremely good approximation for most situations.
Einstein's modification is most noticeable in extremely large gravitational fields, such as near black holes. However, general
relativity also explains such phenomena as small but long-known deviations of the orbit of the planet Mercury from classical
predictions.

The Case for Simplicity

The development of the universal law of gravitation by Newton played a pivotal role in the history of ideas. While it is beyond the
scope of this text to cover that history in any detail, we note some important points. The definition of planet set in 2006 by the
International Astronomical Union (IAU) states that in the solar system, a planet is a celestial body that:

1. isin orbit around the Sun,
2. has sufficient mass to assume hydrostatic equilibrium and
3. has cleared the neighborhood around its orbit.
A non-satellite body fulfilling only the first two of the above criteria is classified as “dwarf planet.”
In 2006, Pluto was demoted to a ‘dwarf planet' after scientists revised their definition of what constitutes a “true” planet.

Table 6.2 Orbital Data and Kepler's Third Law

Earth Moon 3.84x105 0.07481 1.01x10"
Sun Mercury 5.79x10 0.2409 3.34x10%*
Venus 1.082x108 0.6150 3.35%10%
Earth 1.496x10% 1.000 3.35x10%*
Mars 2.279x10% 1.881 3.35%10%4
Jupiter 7.783%108 11.86 3.35x10%*
Satumn 1.427%10° 29.46 3.35x10%*
Neptune | 4.497x10° 164.8 3.35%x10%4
Pluto 5.90x10° 248.3 3.33x10%*
Jupiter  |lo 4.22x10° 0.00485 (1.7 d)| 3.19x 10%!
Europa | 6.71x10° 0.00972 (3.55 d) | 3.20x 10%!
Ganymede | 1.07x10° 0.0196 (7.16 d) | 3.19%102!
Callisto 1.88x10° 0.0457 (16.19 d) | 3.20x 102!

The universal law of gravitation is a good example of a physical principle that is very broadly applicable. That single equation for
the gravitational force describes all situations in which gravity acts. It gives a cause for a vast number of effects, such as the
orbits of the planets and moons in the solar system. It epitomizes the underlying unity and simplicity of physics.

Before the discoveries of Kepler, Copernicus, Galileo, Newton, and others, the solar system was thought to revolve around Earth
as shown in Figure 6.31(a). This is called the Ptolemaic view, for the Greek philosopher who lived in the second century AD.
This model is characterized by a list of facts for the motions of planets with no cause and effect explanation. There tended to be
a different rule for each heavenly body and a general lack of simplicity.

Figure 6.31(b) represents the modern or Copernican model. In this model, a small set of rules and a single underlying force
explain not only all motions in the solar system, but all other situations involving gravity. The breadth and simplicity of the laws of
physics are compelling. As our knowledge of nature has grown, the basic simplicity of its laws has become ever more evident.
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Figure 6.31 (a) The Ptolemaic model of the universe has Earth at the center with the Moon, the planets, the Sun, and the stars revolving about it in
complex superpositions of circular paths. This geocentric model, which can be made progressively more accurate by adding more circles, is purely
descriptive, containing no hints as to what are the causes of these motions. (b) The Copernican model has the Sun at the center of the solar system. It
is fully explained by a small number of laws of physics, including Newton's universal law of gravitation.

angular velocity: @, the rate of change of the angle with which an object moves on a circular path
arc length: Ags , the distance traveled by an object along a circular path

banked curve: the curve in a road that is sloping in a manner that helps a vehicle negotiate the curve
center of mass: the point where the entire mass of an object can be thought to be concentrated

centrifugal force: a fictitious force that tends to throw an object off when the object is rotating in a non-inertial frame of
reference

centripetal acceleration: the acceleration of an object moving in a circle, directed toward the center
centripetal force: any net force causing uniform circular motion

Coriolis force: the fictitious force causing the apparent deflection of moving objects when viewed in a rotating frame of
reference

fictitious force: a force having no physical origin

gravitational constant, G: a proportionality factor used in the equation for Newton's universal law of gravitation; it is a
universal constant—that is, it is thought to be the same everywhere in the universe

ideal angle: the angle at which a car can turn safely on a steep curve, which is in proportion to the ideal speed

ideal banking: the sloping of a curve in a road, where the angle of the slope allows the vehicle to negotiate the curve at a
certain speed without the aid of friction between the tires and the road; the net external force on the vehicle equals the
horizontal centripetal force in the absence of friction

ideal speed: the maximum safe speed at which a vehicle can turn on a curve without the aid of friction between the tire and
the road

microgravity: an environment in which the apparent net acceleration of a body is small compared with that produced by Earth
at its surface

Newton's universal law of gravitation: every particle in the universe attracts every other particle with a force along a line
joining them; the force is directly proportional to the product of their masses and inversely proportional to the square of
the distance between them

non-inertial frame of reference: an accelerated frame of reference

pit: a tiny indentation on the spiral track moulded into the top of the polycarbonate layer of CD

radians: a unit of angle measurement
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radius of curvature: radius of a circular path

rotation angle: the ratio of the arc length to the radius of curvature on a circular path:

_A
Ag=4s

ultracentrifuge: a centrifuge optimized for spinning a rotor at very high speeds

uniform circular motion: the motion of an object in a circular path at constant speed

Section Summary

6.1 Rotation Angle and Angular Velocity
« Uniform circular motion is motion in a circle at constant speed. The rotation angle A# is defined as the ratio of the arc

length to the radius of curvature:
_ As
Ag - T7
where arc length As is distance traveled along a circular path and r is the radius of curvature of the circular path. The
quantity A@ is measured in units of radians (rad), for which
2x rad = 360°= 1 revolution.
» The conversion between radians and degrees is 1 rad = 57.3°.

« Angular velocity @ is the rate of change of an angle,
_ A0
At’
where a rotation A6 takes place in atime At . The units of angular velocity are radians per second (rad/s). Linear velocity
v and angular velocity @ are related by

w

v

v=rw0rw=r.

6.2 Centripetal Acceleration
* Centripetal acceleration a. is the acceleration experienced while in uniform circular motion. It always points toward the

center of rotation. It is perpendicular to the linear velocity v and has the magnitude

2
ac=Y=a.= ro’.

« The unit of centripetal acceleration is m/sZ.

6.3 Centripetal Force
» Centripetal force F. is any force causing uniform circular motion. It is a “center-seeking” force that always points toward

the center of rotation. It is perpendicular to linear velocity v and has magnitude

F.=ma,
which can also be expressed as
2
— Y
FC = mT
or ,
F.= mra?

6.4 Fictitious Forces and Non-inertial Frames: The Coriolis Force
« Rotating and accelerated frames of reference are non-inertial.
« Fictitious forces, such as the Coriolis force, are needed to explain motion in such frames.

6.5 Newton's Universal Law of Gravitation
« Newton's universal law of gravitation: Every particle in the universe attracts every other particle with a force along a line
joining them. The force is directly proportional to the product of their masses and inversely proportional to the square of the

distance between them. In equation form, this is
F = GmM

r2

where F is the magnitude of the gravitational force. G is the gravitational constant, given by
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G =6.673x10"1 N - m?/kg?.
« Newton's law of gravitation applies universally.

6.6 Satellites and Kepler's Laws: An Argument for Simplicity
« Kepler's laws are stated for a small mass m orbiting a larger mass M in near-isolation. Kepler's laws of planetary motion

are then as follows:
Kepler's first law

The orbit of each planet about the Sun is an ellipse with the Sun at one focus.

Kepler's second law

Each planet moves so that an imaginary line drawn from the Sun to the planet sweeps out equal areas in equal times.
Kepler's third law

The ratio of the squares of the periods of any two planets about the Sun is equal to the ratio of the cubes of their average
distances from the Sun:

2 3
Ty _r

7=y
Iy 1y

where T is the period (time for one orbit) and r is the average radius of the orbit.
» The period and radius of a satellite's orbit about a larger body M are related by

2_ 452 3
T _GMr
or
3
2= G
T 4n

Conceptual Questions

6.1 Rotation Angle and Angular Velocity

1. There is an analogy between rotational and linear physical quantities. What rotational quantities are analogous to distance and
velocity?

6.2 Centripetal Acceleration

2. Can centripetal acceleration change the speed of circular motion? Explain.

6.3 Centripetal Force

3. If you wish to reduce the stress (which is related to centripetal force) on high-speed tires, would you use large- or small-
diameter tires? Explain.

4. Define centripetal force. Can any type of force (for example, tension, gravitational force, friction, and so on) be a centripetal
force? Can any combination of forces be a centripetal force?

5. If centripetal force is directed toward the center, why do you feel that you are ‘thrown' away from the center as a car goes
around a curve? Explain.
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6. Race car drivers routinely cut corners as shown in Figure 6.32. Explain how this allows the curve to be taken at the greatest
speed.

Path 1
I
Figure 6.32 Two paths around a race track curve are shown. Race car drivers will take the inside path (called cutting the corner) whenever possible

because it allows them to take the curve at the highest speed.

7. A number of amusement parks have rides that make vertical loops like the one shown in Figure 6.33. For safety, the cars are
attached to the rails in such a way that they cannot fall off. If the car goes over the top at just the right speed, gravity alone will
supply the centripetal force. What other force acts and what is its direction if:

(a) The car goes over the top at faster than this speed?
(b)The car goes over the top at slower than this speed?

Figure 6.33 Amusement rides with a vertical loop are an example of a form of curved motion.

8. What is the direction of the force exerted by the car on the passenger as the car goes over the top of the amusement ride
pictured in Figure 6.33 under the following circumstances:

(a) The car goes over the top at such a speed that the gravitational force is the only force acting?

(b) The car goes over the top faster than this speed?

(c) The car goes over the top slower than this speed?

9. As a skater forms a circle, what force is responsible for making her turn? Use a free body diagram in your answer.
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10. Suppose a child is riding on a merry-go-round at a distance about halfway between its center and edge. She has a lunch box
resting on wax paper, so that there is very little friction between it and the merry-go-round. Which path shown in Figure 6.34 will

the lunch box take when she lets go? The lunch box leaves a trail in the dust on the merry-go-round. Is that trail straight, curved

to the left, or curved to the right? Explain your answer.

Merry-go-round’s rotating
frame of reference

Figure 6.34 A child riding on a merry-go-round releases her lunch box at point P. This is a view from above the clockwise rotation. Assuming it slides
with negligible friction, will it follow path A, B, or C, as viewed from Earth's frame of reference? What will be the shape of the path it leaves in the dust
on the merry-go-round?

11. Do you feel yourself thrown to either side when you negotiate a curve that is ideally banked for your car's speed? What is the
direction of the force exerted on you by the car seat?

12. Suppose a mass is moving in a circular path on a frictionless table as shown in figure. In the Earth's frame of reference, there
is no centrifugal force pulling the mass away from the centre of rotation, yet there is a very real force stretching the string
attaching the mass to the nail. Using concepts related to centripetal force and Newton's third law, explain what force stretches
the string, identifying its physical origin.

Figure 6.35 A mass attached to a nail on a frictionless table moves in a circular path. The force stretching the string is real and not fictional. What is
the physical origin of the force on the string?

6.4 Fictitious Forces and Non-inertial Frames: The Coriolis Force

13. When a toilet is flushed or a sink is drained, the water (and other material) begins to rotate about the drain on the way down.
Assuming no initial rotation and a flow initially directly straight toward the drain, explain what causes the rotation and which
direction it has in the northern hemisphere. (Note that this is a small effect and in most toilets the rotation is caused by directional
water jets.) Would the direction of rotation reverse if water were forced up the drain?

14. Is there a real force that throws water from clothes during the spin cycle of a washing machine? Explain how the water is
removed.
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15. In one amusement park ride, riders enter a large vertical barrel and stand against the wall on its horizontal floor. The barrel is
spun up and the floor drops away. Riders feel as if they are pinned to the wall by a force something like the gravitational force.
This is a fictitious force sensed and used by the riders to explain events in the rotating frame of reference of the barrel. Explain in
an inertial frame of reference (Earth is nearly one) what pins the riders to the wall, and identify all of the real forces acting on
them.

16. Action at a distance, such as is the case for gravity, was once thought to be illogical and therefore untrue. What is the
ultimate determinant of the truth in physics, and why was this action ultimately accepted?

17. Two friends are having a conversation. Anna says a satellite in orbit is in freefall because the satellite keeps falling toward

Earth. Tom says a satellite in orbit is not in freefall because the acceleration due to gravity is not 9.80 m/s2 . Who do you agree
with and why?

18. A non-rotating frame of reference placed at the center of the Sun is very nearly an inertial one. Why is it not exactly an inertial
frame?
6.5 Newton's Universal Law of Gravitation

19. Action at a distance, such as is the case for gravity, was once thought to be illogical and therefore untrue. What is the
ultimate determinant of the truth in physics, and why was this action ultimately accepted?

20. Two friends are having a conversation. Anna says a satellite in orbit is in freefall because the satellite keeps falling toward

Earth. Tom says a satellite in orbit is not in freefall because the acceleration due to gravity is not 9.80 m/s2 . Who do you agree
with and why?

21. Draw a free body diagram for a satellite in an elliptical orbit showing why its speed increases as it approaches its parent body
and decreases as it moves away.

22. Newton's laws of motion and gravity were among the first to convincingly demonstrate the underlying simplicity and unity in
nature. Many other examples have since been discovered, and we now expect to find such underlying order in complex
situations. Is there proof that such order will always be found in new explorations?

6.6 Satellites and Kepler's Laws: An Argument for Simplicity

23. In what frame(s) of reference are Kepler's laws valid? Are Kepler's laws purely descriptive, or do they contain causal
information?
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Problems & Exercises

6.1 Rotation Angle and Angular Velocity

1. Semi-trailer trucks have an odometer on one hub of a
trailer wheel. The hub is weighted so that it does not rotate,
but it contains gears to count the number of wheel
revolutions—it then calculates the distance traveled. If the
wheel has a 1.15 m diameter and goes through 200,000
rotations, how many kilometers should the odometer read?

2. Microwave ovens rotate at a rate of about 6 rev/min. What
is this in revolutions per second? What is the angular velocity
in radians per second?

3. An automobile with 0.260 m radius tires travels 80,000 km
before wearing them out. How many revolutions do the tires
make, neglecting any backing up and any change in radius
due to wear?

4. (a) What is the period of rotation of Earth in seconds? (b)
What is the angular velocity of Earth? (c) Given that Earth has

aradius of 6.4x10% m atits equator, what is the linear
velocity at Earth's surface?

5. A baseball pitcher brings his arm forward during a pitch,
rotating the forearm about the elbow. If the velocity of the ball
in the pitcher's hand is 35.0 m/s and the ball is 0.300 m from
the elbow joint, what is the angular velocity of the forearm?

6. In lacrosse, a ball is thrown from a net on the end of a stick
by rotating the stick and forearm about the elbow. If the
angular velocity of the ball about the elbow joint is 30.0 rad/s
and the ball is 1.30 m from the elbow joint, what is the velocity
of the ball?

7. A truck with 0.420-m-radius tires travels at 32.0 m/s. What
is the angular velocity of the rotating tires in radians per
second? What is this in rev/min?

8. Integrated Concepts When kicking a football, the kicker
rotates his leg about the hip joint.

(a) If the velocity of the tip of the kicker's shoe is 35.0 m/s and
the hip joint is 1.05 m from the tip of the shoe, what is the
shoe tip's angular velocity?

(b) The shoe is in contact with the initially stationary 0.500 kg
football for 20.0 ms. What average force is exerted on the
football to give it a velocity of 20.0 m/s?

(c) Find the maximum range of the football, neglecting air
resistance.

9. Construct Your Own Problem

Consider an amusement park ride in which participants are
rotated about a vertical axis in a cylinder with vertical walls.
Once the angular velocity reaches its full value, the floor
drops away and friction between the walls and the riders
prevents them from sliding down. Construct a problem in
which you calculate the necessary angular velocity that
assures the riders will not slide down the wall. Include a free
body diagram of a single rider. Among the variables to
consider are the radius of the cylinder and the coefficients of
friction between the riders' clothing and the wall.
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6.2 Centripetal Acceleration

10. A fairground ride spins its occupants inside a flying
saucer-shaped container. If the horizontal circular path the
riders follow has an 8.00 m radius, at how many revolutions
per minute will the riders be subjected to a centripetal
acceleration whose magnitude is 1.50 times that due to
gravity?

11. A runner taking part in the 200 m dash must run around
the end of a track that has a circular arc with a radius of
curvature of 30 m. If he completes the 200 m dash in 23.2 s
and runs at constant speed throughout the race, what is the
magnitude of his centripetal acceleration as he runs the
curved portion of the track?

12. Taking the age of Earth to be about 4X 10° years and

assuming its orbital radius of 1.5 x10''m has not changed

and is circular, calculate the approximate total distance Earth
has traveled since its birth (in a frame of reference stationary
with respect to the Sun).

13. The propeller of a World War Il fighter plane is 2.30 m in
diameter.

(a) What is its angular velocity in radians per second if it spins
at 1200 rev/min?

(b) What is the linear speed of its tip at this angular velocity if
the plane is stationary on the tarmac?

(c) What is the centripetal acceleration of the propeller tip
under these conditions? Calculate it in meters per second
squared and convert to multiples of g.

14. An ordinary workshop grindstone has a radius of 7.50 cm
and rotates at 6500 rev/min.

(a) Calculate the magnitude of the centripetal acceleration at
its edge in meters per second squared and convert it to
multiples of g .

(b) What is the linear speed of a point on its edge?

15. Helicopter blades withstand tremendous stresses. In
addition to supporting the weight of a helicopter, they are
spun at rapid rates and experience large centripetal
accelerations, especially at the tip.

(a) Calculate the magnitude of the centripetal acceleration at
the tip of a 4.00 m long helicopter blade that rotates at 300
rev/min.

(b) Compare the linear speed of the tip with the speed of
sound (taken to be 340 m/s).

16. Olympic ice skaters are able to spin at about 5 rev/s.
(a) What is their angular velocity in radians per second?

(b) What is the centripetal acceleration of the skater's nose if
it is 0.120 m from the axis of rotation?

(c) An exceptional skater named Dick Button was able to spin
much faster in the 1950s than anyone since—at about 9 rev/
s. What was the centripetal acceleration of the tip of his nose,
assuming it is at 0.120 m radius?

(d) Comment on the magnitudes of the accelerations found. It
is reputed that Button ruptured small blood vessels during his
spins.

17. What percentage of the acceleration at Earth's surface is
the acceleration due to gravity at the position of a satellite
located 300 km above Earth?
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18. Verify that the linear speed of an ultracentrifuge is about
0.50 km/s, and Earth in its orbit is about 30 km/s by
calculating:

(a) The linear speed of a point on an ultracentrifuge 0.100 m
from its center, rotating at 50,000 rev/min.

(b) The linear speed of Earth in its orbit about the Sun (use
data from the text on the radius of Earth's orbit and
approximate it as being circular).

19. A rotating space station is said to create “artificial
gravity"—a loosely-defined term used for an acceleration that
would be crudely similar to gravity. The outer wall of the
rotating space station would become a floor for the
astronauts, and centripetal acceleration supplied by the floor
would allow astronauts to exercise and maintain muscle and
bone strength more naturally than in non-rotating space
environments. If the space station is 200 m in diameter, what
angular velocity would produce an “artificial gravity” of

9.80 m/s at the rim?

20. At takeoff, a commercial jet has a 60.0 m/s speed. Its tires
have a diameter of 0.850 m.

(a) At how many rev/min are the tires rotating?
(b) What is the centripetal acceleration at the edge of the tire?

(c) With what force must a determined 1.00x 10~ kg
bacterium cling to the rim?

(d) Take the ratio of this force to the bacterium's weight.
21. Integrated Concepts

Riders in an amusement park ride shaped like a Viking ship
hung from a large pivot are rotated back and forth like a rigid
pendulum. Sometime near the middle of the ride, the ship is
momentarily motionless at the top of its circular arc. The ship
then swings down under the influence of gravity.

(a) Assuming negligible friction, find the speed of the riders at
the bottom of its arc, given the system's center of mass
travels in an arc having a radius of 14.0 m and the riders are
near the center of mass.

(b) What is the centripetal acceleration at the bottom of the
arc?

(c) Draw a free body diagram of the forces acting on a rider at
the bottom of the arc.

(d) Find the force exerted by the ride on a 60.0 kg rider and
compare it to her weight.

(e) Discuss whether the answer seems reasonable.
22. Unreasonable Results

A mother pushes her child on a swing so that his speed is
9.00 m/s at the lowest point of his path. The swing is
suspended 2.00 m above the child's center of mass.

(a) What is the magnitude of the centripetal acceleration of
the child at the low point?

(b) What is the magnitude of the force the child exerts on the
seat if his mass is 18.0 kg?

(c) What is unreasonable about these results?
(d) Which premises are unreasonable or inconsistent?
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6.3 Centripetal Force

23. (a) A 22.0 kg child is riding a playground merry-go-round
that is rotating at 40.0 rev/min. What centripetal force must
she exert to stay on if she is 1.25 m from its center?

(b) What centripetal force does she need to stay on an
amusement park merry-go-round that rotates at 3.00 rev/min
if she is 8.00 m from its center?

(c) Compare each force with her weight.

24, Calculate the centripetal force on the end of a 100 m
(radius) wind turbine blade that is rotating at 0.5 rev/s.
Assume the mass is 4 kg.

25. What is the ideal banking angle for a gentle turn of 1.20
km radius on a highway with a 105 km/h speed limit (about 65
mi/h), assuming everyone travels at the limit?

26. What is the ideal speed to take a 100 m radius curve
banked at a 20.0° angle?

27. (a) What is the radius of a bobsled turn banked at 75.0°
and taken at 30.0 m/s, assuming it is ideally banked?

(b) Calculate the centripetal acceleration.

(c) Does this acceleration seem large to you?
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28. Part of riding a bicycle involves leaning at the correct
angle when making a turn, as seen in Figure 6.36. To be
stable, the force exerted by the ground must be on a line
going through the center of gravity. The force on the bicycle
wheel can be resolved into two perpendicular
components—ifriction parallel to the road (this must supply the
centripetal force), and the vertical normal force (which must
equal the system's weight).

(a) Show that € (as defined in the figure) is related to the
speed v and radius of curvature r of the turn in the same
way as for an ideally banked roadway—that is,

6 =tan~! v2/ rg

(b) Calculate @ for a 12.0 m/s turn of radius 30.0 m (as in a
race).

Free-body diagram

Figure 6.36 A bicyclist negotiating a turn on level ground must lean at
the correct angle—the ability to do this becomes instinctive. The force of
the ground on the wheel needs to be on a line through the center of
gravity. The net external force on the system is the centripetal force. The
vertical component of the force on the wheel cancels the weight of the
system while its horizontal component must supply the centripetal force.
This process produces a relationship among the angle @, the speed Vv
, and the radius of curvature r of the turn similar to that for the ideal
banking of roadways.
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29. A large centrifuge, like the one shown in Figure 6.37(a),
is used to expose aspiring astronauts to accelerations similar
to those experienced in rocket launches and atmospheric
reentries.

(a) At what angular velocity is the centripetal acceleration
10 g if the rider is 15.0 m from the center of rotation?

(b) The rider's cage hangs on a pivot at the end of the arm,
allowing it to swing outward during rotation as shown in
Figure 6.37(b). At what angle € below the horizontal will the

cage hang when the centripetal accelerationis 10 g ? (Hint:

The arm supplies centripetal force and supports the weight of
the cage. Draw a free body diagram of the forces to see what
the angle @ should be.)

Farm.y = Fc
Fan'n‘y
Fc = Fnet F"‘"‘""

(b)

Figure 6.37 (a) NASA centrifuge used to subject trainees to
accelerations similar to those experienced in rocket launches and
reentries. (credit: NASA) (b) Rider in cage showing how the cage pivots
outward during rotation. This allows the total force exerted on the rider
by the cage to be along its axis at all times.

30. Integrated Concepts

If a car takes a banked curve at less than the ideal speed,
friction is needed to keep it from sliding toward the inside of
the curve (a real problem on icy mountain roads). (a)
Calculate the ideal speed to take a 100 m radius curve
banked at 15.0°. (b) What is the minimum coefficient of
friction needed for a frightened driver to take the same curve
at 20.0 km/h?
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31. Modern roller coasters have vertical loops like the one
shown in Figure 6.38. The radius of curvature is smaller at
the top than on the sides so that the downward centripetal
acceleration at the top will be greater than the acceleration
due to gravity, keeping the passengers pressed firmly into
their seats. What is the speed of the roller coaster at the top
of the loop if the radius of curvature there is 15.0 m and the
downward acceleration of the car is 1.50 g?

I

minimum

Figure 6.38 Teardrop-shaped loops are used in the latest roller coasters
so that the radius of curvature gradually decreases to a minimum at the
top. This means that the centripetal acceleration builds from zero to a
maximum at the top and gradually decreases again. A circular loop
would cause a jolting change in acceleration at entry, a disadvantage
discovered long ago in railroad curve design. With a small radius of
curvature at the top, the centripetal acceleration can more easily be kept
greater than g so that the passengers do not lose contact with their

seats nor do they need seat belts to keep them in place.
32. Unreasonable Results

(a) Calculate the minimum coefficient of friction needed for a
car to negotiate an unbanked 50.0 m radius curve at 30.0 m/
S.

(b) What is unreasonable about the result?
(c) Which premises are unreasonable or inconsistent?

6.5 Newton's Universal Law of Gravitation

33. (a) Calculate Earth's mass given the acceleration due to
gravity at the North Pole is 9.830 m/s? and the radius of the
Earth is 6371 km from center to pole.

(b) Compare this with the accepted value of

5.979x10%* kg .

34. (a) Calculate the magnitude of the acceleration due to
gravity on the surface of Earth due to the Moon.

(b) Calculate the magnitude of the acceleration due to gravity
at Earth due to the Sun.

(c) Take the ratio of the Moon's acceleration to the Sun's and
comment on why the tides are predominantly due to the Moon
in spite of this number.
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35. (a) What is the acceleration due to gravity on the surface
of the Moon?

(b) On the surface of Mars? The mass of Mars is
6.418x10%% kg and its radius is 3.38x10° m .

36. (a) Calculate the acceleration due to gravity on the
surface of the Sun.

(b) By what factor would your weight increase if you could
stand on the Sun? (Never mind that you cannot.)

37. The Moon and Earth rotate about their common center of
mass, which is located about 4700 km from the center of
Earth. (This is 1690 km below the surface.)

(a) Calculate the magnitude of the acceleration due to the
Moon's gravity at that point.

(b) Calculate the magnitude of the centripetal acceleration of
the center of Earth as it rotates about that point once each
lunar month (about 27.3 d) and compare it with the
acceleration found in part (a). Comment on whether or not
they are equal and why they should or should not be.

38. Solve part (b) of Example 6.6 using a, = V2 /r.

39. Astrology, that unlikely and vague pseudoscience, makes
much of the position of the planets at the moment of one's
birth. The only known force a planet exerts on Earth is
gravitational.

(a) Calculate the magnitude of the gravitational force exerted
on a 4.20 kg baby by a 100 kg father 0.200 m away at birth
(he is assisting, so he is close to the child).

(b) Calculate the magnitude of the force on the baby due to
Jupiter if it is at its closest distance to Earth, some

6.29x10'! m away. How does the force of Jupiter on the

baby compare to the force of the father on the baby? Other
objects in the room and the hospital building also exert similar
gravitational forces. (Of course, there could be an unknown
force acting, but scientists first need to be convinced that
there is even an effect, much less that an unknown force
causes it.)

40. The existence of the dwarf planet Pluto was proposed
based on irregularities in Neptune's orbit. Pluto was
subsequently discovered near its predicted position. But it
now appears that the discovery was fortuitous, because Pluto
is small and the irregularities in Neptune's orbit were not well
known. To illustrate that Pluto has a minor effect on the orbit
of Neptune compared with the closest planet to Neptune:

(a) Calculate the acceleration due to gravity at Neptune due

to Pluto when they are 4.50% 102 m apart, as they are at
present. The mass of Pluto is 1.4X 1022 kg .

(b) Calculate the acceleration due to gravity at Neptune due

to Uranus, presently about 2.50x10'%> m apart, and
compare it with that due to Pluto. The mass of Uranus is

8.62x10% kg .
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41. (a) The Sun orbits the Milky Way galaxy once each
2.60 x 108 y , with a roughly circular orbit averaging

3.00 x 10% light years in radius. (A light year is the distance
traveled by light in 1 y.) Calculate the centripetal acceleration
of the Sun in its galactic orbit. Does your result support the
contention that a nearly inertial frame of reference can be
located at the Sun?

(b) Calculate the average speed of the Sun in its galactic
orbit. Does the answer surprise you?

42. Unreasonable Result

A mountain 10.0 km from a person exerts a gravitational force
on him equal to 2.00% of his weight.

(a) Calculate the mass of the mountain.
(b) Compare the mountain's mass with that of Earth.
(c) What is unreasonable about these results?

(d) Which premises are unreasonable or inconsistent? (Note
that accurate gravitational measurements can easily detect
the effect of nearby mountains and variations in local

geology.)

6.6 Satellites and Kepler's Laws: An Argument
for Simplicity

43. A geosynchronous Earth satellite is one that has an
orbital period of precisely 1 day. Such orbits are useful for
communication and weather observation because the satellite
remains above the same point on Earth (provided it orbits in
the equatorial plane in the same direction as Earth's rotation).
Calculate the radius of such an orbit based on the data for the
moon in Table 6.2.

44, Calculate the mass of the Sun based on data for Earth's
orbit and compare the value obtained with the Sun's actual
mass.

45. Find the mass of Jupiter based on data for the orbit of one
of its moons, and compare your result with its actual mass.

46. Find the ratio of the mass of Jupiter to that of Earth based
on data in Table 6.2.

47. Astronomical observations of our Milky Way galaxy
indicate that it has a mass of about 8.0x10'! solar masses.

A star orbiting on the galaxy's periphery is about 6.0X 10*
light years from its center. (a) What should the orbital period

of that star be? (b) If its period is 6.0x10 instead, what is

the mass of the galaxy? Such calculations are used to imply
the existence of “dark matter” in the universe and have
indicated, for example, the existence of very massive black
holes at the centers of some galaxies.

Test Prep for AP® Courses

6.5 Newton's Universal Law of Gravitation

1. Jupiter has a mass approximately 300 times greater than
Earth's and a radius about 11 times greater. How will the
gravitational acceleration at the surface of Jupiter compare to
that at the surface of the Earth?

a. Greater

b. Less

c. About the same

d. Not enough information
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48. Integrated Concepts

Space debris left from old satellites and their launchers is
becoming a hazard to other satellites. (a) Calculate the speed
of a satellite in an orbit 900 km above Earth's surface. (b)
Suppose a loose rivet is in an orbit of the same radius that
intersects the satellite's orbit at an angle of 90° relative to

Earth. What is the velocity of the rivet relative to the satellite
just before striking it? (c) Given the rivet is 3.00 mm in size,
how long will its collision with the satellite last? (d) If its mass
is 0.500 g, what is the average force it exerts on the satellite?
(e) How much energy in joules is generated by the collision?
(The satellite's velocity does not change appreciably, because
its mass is much greater than the rivet's.)

49. Unreasonable Results

(a) Based on Kepler's laws and information on the orbital
characteristics of the Moon, calculate the orbital radius for an
Earth satellite having a period of 1.00 h. (b) What is
unreasonable about this result? (c) What is unreasonable or
inconsistent about the premise of a 1.00 h orbit?

50. Construct Your Own Problem

On February 14, 2000, the NEAR spacecraft was successfully
inserted into orbit around Eros, becoming the first artificial
satellite of an asteroid. Construct a problem in which you
determine the orbital speed for a satellite near Eros. You will
need to find the mass of the asteroid and consider such
things as a safe distance for the orbit. Although Eros is not
spherical, calculate the acceleration due to gravity on its
surface at a point an average distance from its center of
mass. Your instructor may also wish to have you calculate the
escape velocity from this point on Eros.

2. Given Newton's universal law of gravitation (Equation
6.40), under what circumstances is the force due to gravity
maximized?

GM

3. Inthe formula g = = what does G represent?
r

This OpenStax book is available for free at http://cnx.org/content/col11844/1.14



Chapter 6 | Gravitation and Uniform Circular Motion

The acceleration due to gravity

A gravitational constant that is the same everywhere in
the universe

A gravitational constant that is inversely proportional to
the radius

The factor by which you multiply the inertial mass to
obtain the gravitational mass

4. Saturn's moon Titan has a radius of 2.58 x 106 m and a
measured gravitational field of 1.35 m/s2. What is its mass?

5. A recently discovered planet has a mass twice as great as
Earth's and a radius twice as large as Earth's. What will be
the approximate size of its gravitational field?

a.

b.
c.
d

19 m/s?
4.9 m/s?
2.5 m/s?
9.8 m/s?

6. 4. Earth is 1.5 x 101 m from the Sun. Mercury is 5.7 x

1010

m from the Sun. How does the gravitational field of the
Sun on Mercury (gsm) compare to the gravitational field of the

Sun on Earth (gsg)?
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7

Figure 7.1 How many forms of energy can you identify in this photograph of a wind farm in lowa? (credit: Jirgen from Sandesneben, Germany,

Chapter line

Wikimedia Commons)

7.1. Work: The Scientific Definition

7.2. Kinetic Energy and the Work-Energy Theorem
7.3. Gravitational Potential Energy

7.4. Conservative Forces and Potential Energy
7.5. Nonconservative Forces

7.6. Conservation of Energy

7.7. Power

7.8. Work, Energy, and Power in Humans

7.9. World Energy Use

Connection for AP® Courses

Energy plays an essential role both in everyday events and in scientific phenomena. You can no doubt name many forms of
energy, from that provided by our foods to the energy we use to run our cars and the sunlight that warms us on the beach. You
can also cite examples of what people call “energy” that may not be scientific, such as someone having an energetic personality.
Not only does energy have many interesting forms, it is involved in almost all phenomena, and is one of the most important
concepts of physics.

There is no simple and accurate scientific definition for energy. Energy is characterized by its many forms and the fact that it is
conserved. We can loosely define energy as the ability to do work, admitting that in some circumstances not all energy is
available to do work. Because of the association of energy with work, we begin the chapter with a discussion of work. Work is
intimately related to energy and how energy moves from one system to another or changes form. The work-energy theorem
supports Big Idea 3, that interactions between objects are described by forces. In particular, exerting a force on an object may do
work on it, changing it's energy (Enduring Understanding 3.E). The work-energy theorem, introduced in this chapter, establishes
the relationship between work done on an object by an external force and changes in the object’s kinetic energy (Essential
Knowledge 3.E.1).

Similarly, systems can do work on each other, supporting Big Idea 4, that interactions between systems can result in changes in
those systems—in this case, changes in the total energy of the system (Enduring Understanding 4.C). The total energy of the
system is the sum of its kinetic energy, potential energy, and microscopic internal energy (Essential Knowledge 4.C.1). In this
chapter students learn how to calculate kinetic, gravitational, and elastic potential energy in order to determine the total
mechanical energy of a system. The transfer of mechanical energy into or out of a system is equal to the work done on the
system by an external force with a nonzero component parallel to the displacement (Essential Knowledge 4.C.2).

An important aspect of energy is that the total amount of energy in the universe is constant. Energy can change forms, but it
cannot appear from nothing or disappear without a trace. Energy is thus one of a handful of physical quantities that we say is
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“conserved.” Conservation of energy (as physicists call the principle that energy can neither be created nor destroyed) is based
on experiment. Even as scientists discovered new forms of energy, conservation of energy has always been found to apply.
Perhaps the most dramatic example of this was supplied by Einstein when he suggested that mass is equivalent to energy (his

famous equation E = mcz). This is one of the most important applications of Big Idea 5, that changes that occur as a result of
interactions are constrained by conservation laws. Specifically, there are many situations where conservation of energy
(Enduring Understanding 5.B) is both a useful concept and starting point for calculations related to the system. Note, however,
that conservation doesn’t necessarily mean that energy in a system doesn’t change. Energy may be transferred into or out of the
system, and the change must be equal to the amount transferred (Enduring Understanding 5.A). This may occur if there is an
external force or a transfer between external objects and the system (Essential Knowledge 5.A.3). Energy is one of the
fundamental quantities that are conserved for all systems (Essential Knowledge 5.A.2). The chapter introduces concepts of
kinetic energy and potential energy. Kinetic energy is introduced as an energy of motion that can be changed by the amount of
work done by an external force. Potential energy can only exist when objects interact with each other via conservative forces
according to classical physics (Essential Knowledge 5.B.3). Because of this, a single object can only have kinetic energy and no
potential energy (Essential Knowledge 5.B.1). The chapter also introduces the idea that the energy transfer is equal to the work
done on the system by external forces and the rate of energy transfer is defined as power (Essential Knowledge 5.B.5).

From a societal viewpoint, energy is one of the major building blocks of modern civilization. Energy resources are key limiting
factors to economic growth. The world use of energy resources, especially oil, continues to grow, with ominous consequences
economically, socially, politically, and environmentally. We will briefly examine the world’s energy use patterns at the end of this
chapter.

The concepts in this chapter support:
Big Idea 3 The interactions of an object with other objects can be described by forces.
Enduring Understanding 3.E A force exerted on an object can change the kinetic energy of the object.

Essential Knowledge 3.E.1 The change in the kinetic energy of an object depends on the force exerted on the object and on the
displacement of the object during the interval that the force is exerted.

Big Idea 4 Interactions between systems can result in changes in those systems.
Enduring Understanding 4.C Interactions with other objects or systems can change the total energy of a system.

Essential Knowledge 4.C.1 The energy of a system includes its kinetic energy, potential energy, and microscopic internal energy.
Examples should include gravitational potential energy, elastic potential energy, and kinetic energy.

Essential Knowledge 4.C.2 Mechanical energy (the sum of kinetic and potential energy) is transferred into or out of a system
when an external force is exerted on a system such that a component of the force is parallel to its displacement. The process
through which the energy is transferred is called work.

Big Idea 5 Changes that occur as a result of interactions are constrained by conservation laws.

Enduring Understanding 5.A Certain quantities are conserved, in the sense that the changes of those quantities in a given
system are always equal to the transfer of that quantity to or from the system by all possible interactions with other systems.

Essential Knowledge 5.A.2 For all systems under all circumstances, energy, charge, linear momentum, and angular momentum
are conserved.

Essential Knowledge 5.A.3 An interaction can be either a force exerted by objects outside the system or the transfer of some
quantity with objects outside the system.

Enduring Understanding 5.B The energy of a system is conserved.

Essential Knowledge 5.B.1 Classically, an object can only have kinetic energy since potential energy requires an interaction
between two or more objects.

Essential Knowledge 5.B.3 A system with internal structure can have potential energy. Potential energy exists within a system if
the objects within that system interact with conservative forces.

Essential Knowledge 5.B.5 Energy can be transferred by an external force exerted on an object or system that moves the object
or system through a distance; this energy transfer is called work. Energy transfer in mechanical or electrical systems may occur
at different rates. Power is defined as the rate of energy transfer into, out of, or within a system.

7.1 Work: The Scientific Definition

Learning Objectives

By the end of this section, you will be able to:

« Explain how an object must be displaced for a force on it to do work.
« Explain how relative directions of force and displacement of an object determine whether the work done on the object is
positive, negative, or zero.

The information presented in this section supports the following AP® learning objectives and science practices:

« 5.B.5.1 The student is able to design an experiment and analyze data to examine how a force exerted on an object or
system does work on the object or system as it moves through a distance. (S.P. 4.2, 5.1)
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« 5.B.5.2 The student is able to design an experiment and analyze graphical data in which interpretations of the area
under a force-distance curve are needed to determine the work done on or by the object or system. (S.P. 4.5, 5.1)

« 5.B.5.3 The student is able to predict and calculate from graphical data the energy transfer to or work done on an
object or system from information about a force exerted on the object or system through a distance. (S.P. 1.5, 2.2, 6.4)

What It Means to Do Work

The scientific definition of work differs in some ways from its everyday meaning. Certain things we think of as hard work, such as
writing an exam or carrying a heavy load on level ground, are not work as defined by a scientist. The scientific definition of work
reveals its relationship to energy—whenever work is done, energy is transferred.

For work, in the scientific sense, to be done on an object, a force must be exerted on that object and there must be displacement
of that object in the direction of the force.

Formally, the work done on a system by a constant force is defined to be the product of the component of the force in the
direction of motion and the distance through which the force acts. For a constant force, this is expressed in equation form as

W= |F|(cosb)|d], (7.1)

where W is work, d is the displacement of the system, and @ is the angle between the force vector F and the displacement
vector d, as in Figure 7.2. We can also write this as

W = Fd cos 0. (7.2)
To find the work done on a system that undergoes motion that is not one-way or that is in two or three dimensions, we divide the
motion into one-way one-dimensional segments and add up the work done over each segment.
What is Work?

The work done on a system by a constant force is the product of the component of the force in the direction of motion times
the distance through which the force acts. For one-way motion in one dimension, this is expressed in equation form as

W = Fd cos 6, (7.3)

where W is work, F is the magnitude of the force on the system, d is the magnitude of the displacement of the system,
and 6 is the angle between the force vector F and the displacement vector d .
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(b) (c)

Electric
generator

/;305 ]

(d) (e)
Figure 7.2 Examples of work. (a) The work done by the force ' on this lawn mower is F'd cos @ . Note that F cos @ is the component of the

force in the direction of motion. (b) A person holding a briefcase does no work on it, because there is no displacement. No energy is transferred to or
from the briefcase. (c) The person moving the briefcase horizontally at a constant speed does no work on it, and transfers no energy to it. (d) Work is

done on the briefcase by carrying it up stairs at constant speed, because there is necessarily a component of force F in the direction of the motion.
Energy is transferred to the briefcase and could in turn be used to do work. (e) When the briefcase is lowered, energy is transferred out of the briefcase
and into an electric generator. Here the work done on the briefcase by the generator is negative, removing energy from the briefcase, because F and

d are in opposite directions.

To examine what the definition of work means, let us consider the other situations shown in Figure 7.2. The person holding the
briefcase in Figure 7.2(b) does no work, for example. Here d = 0,so W = 0. Why is it you get tired just holding a load? The
answer is that your muscles are doing work against one another, but they are doing no work on the system of interest (the
“briefcase-Earth system”—see Gravitational Potential Energy for more details). There must be displacement for work to be
done, and there must be a component of the force in the direction of the motion. For example, the person carrying the briefcase
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on level ground in Figure 7.2(c) does no work on it, because the force is perpendicular to the motion. That is, cos 90° =0, and
so W=0.

In contrast, when a force exerted on the system has a component in the direction of motion, such as in Figure 7.2(d), work is
done—energy is transferred to the briefcase. Finally, in Figure 7.2(e), energy is transferred from the briefcase to a generator.
There are two good ways to interpret this energy transfer. One interpretation is that the briefcase’s weight does work on the
generator, giving it energy. The other interpretation is that the generator does negative work on the briefcase, thus removing
energy from it. The drawing shows the latter, with the force from the generator upward on the briefcase, and the displacement
downward. This makes 8 = 180°, and cos 180° = —1 ; therefore, W is negative.

Real World Connections: When Work Happens

Note that work as we define it is not the same as effort. You can push against a concrete wall all you want, but you won’t
move it. While the pushing represents effort on your part, the fact that you have not changed the wall’s state in any way
indicates that you haven’t done work. If you did somehow push the wall over, this would indicate a change in the wall’s state,
and therefore you would have done work.

This can also be shown with Figure 7.2(a): as you push a lawnmower against friction, both you and friction are changing the
lawnmower’s state. However, only the component of the force parallel to the movement is changing the lawnmower’s state.
The component perpendicular to the motion is trying to push the lawnmower straight into Earth; the lawnmower does not
move into Earth, and therefore the lawnmower’s state is not changing in the direction of Earth.

Similarly, in Figure 7.2(c), both your hand and gravity are exerting force on the briefcase. However, they are both acting
perpendicular to the direction of motion, hence they are not changing the condition of the briefcase and do no work.
However, if the briefcase were dropped, then its displacement would be parallel to the force of gravity, which would do work
on it, changing its state (it would fall to the ground).

Calculating Work

Work and energy have the same units. From the definition of work, we see that those units are force times distance. Thus, in SI
units, work and energy are measured in newton-meters. A newton-meter is given the special name joule (J), and

1J=1N-m=1kg- m?/s2. One joule is not a large amount of energy; it would lift a small 100-gram apple a distance of
about 1 meter.

Example 7.1 Calculating the Work You Do to Push a Lawn Mower Across a Large Lawn

How much work is done on the lawn mower by the person in Figure 7.2(a) if he exerts a constant force of 75.0 N at an
angle 35° below the horizontal and pushes the mower 25.0 m on level ground? Convert the amount of work from joules to
kilocalories and compare it with this person’s average daily intake of 10,000 kJ (about 2400 kcal ) of food energy. One
calorie (1 cal) of heat is the amount required to warm 1 g of water by 1°C, and is equivalent to 4.184 J , while one food
calorie (1 kcal) is equivalentto 4184 J .

Strategy

We can solve this problem by substituting the given values into the definition of work done on a system, stated in the
equation W = Fd cos 6. The force, angle, and displacement are given, so that only the work W is unknown.

Solution
The equation for the work is
W = Fd cos 0. (7.4)

Substituting the known values gives

W = (75.0 N)(25.0 m) cos (35.0°) (7.5)

= 1536) = 1.54x10%J.
Converting the work in joules to kilocalories yields W = (1536 J)(1 kcal /4184 J) = 0.367 kcal . The ratio of the work
done to the daily consumption is

W — -4 (7.6)
T sl — =2

Discussion

This ratio is a tiny fraction of what the person consumes, but it is typical. Very little of the energy released in the consumption
of food is used to do work. Even when we “work” all day long, less than 10% of our food energy intake is used to do work
and more than 90% is converted to thermal energy or stored as chemical energy in fat.
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Applying the Science Practices: Boxes on Floors

Plan and design an experiment to determine how much work you do on a box when you are pushing it over different floor
surfaces. Make sure your experiment can help you answer the following questions: What happens on different surfaces?
What happens if you take different routes across the same surface? Do you get different results with two people pushing on
perpendicular surfaces of the box? What if you vary the mass in the box? Remember to think about both your effort in any
given instant (a proxy for force exerted) and the total work you do. Also, when planning your experiments, remember that in
any given set of trials you should only change one variable.

You should find that you have to exert more effort on surfaces that will create more friction with the box, though you might be
surprised by which surfaces the box slides across easily. Longer routes result in your doing more work, even though the box
ends up in the same place. Two people pushing on perpendicular sides do less work for their total effort, due to the forces
and displacement not being parallel. A more massive box will take more effort to move.

Applying the Science Practices: Force-Displacement Diagrams

Suppose you are given two carts and a track to run them on, a motion detector, a force sensor, and a computer that can
record the data from the two sensors. Plan and design an experiment to measure the work done on one of the carts, and
compare your results to the work-energy theorem. Note that the motion detector can measure both displacement and
velocity versus time, while the force sensor measures force over time, and the carts have known masses. Recall that the
work-energy theorem states that the work done on a system (force over displacement) should equal the change in kinetic
energy. In your experimental design, describe and compare two possible ways to calculate the work done.

Sample Response: One possible technique is to set up the motion detector at one end of the track, and have the computer
record both displacement and velocity over time. Then attach the force sensor to one of the carts, and use this cart, through
the force sensor, to push the second cart toward the motion detector. Calculate the difference between the final and initial
kinetic energies (the kinetic energies after and before the push), and compare this to the area of a graph of force versus
displacement for the duration of the push. They should be the same.

7.2 Kinetic Energy and the Work-Energy Theorem

Learning Objectives

By the end of this section, you will be able to:

« Explain work as a transfer of energy and net work as the work done by the net force.
« Explain and apply the work-energy theorem.

The information presented in this section supports the following AP® learning objectives and science practices:

» 3.E.1.1 The student is able to make predictions about the changes in kinetic energy of an object based on
considerations of the direction of the net force on the object as the object moves. (S.P. 6.4, 7.2)

» 3.E.1.2 The student is able to use net force and velocity vectors to determine qualitatively whether kinetic energy of an
object would increase, decrease, or remain unchanged. (S.P. 1.4)

» 3.E.1.3 The student is able to use force and velocity vectors to determine qualitatively or quantitatively the net force
exerted on an object and qualitatively whether kinetic energy of that object would increase, decrease, or remain
unchanged. (S.P. 1.4, 2.2)

» 3.E.1.4 The student is able to apply mathematical routines to determine the change in kinetic energy of an object given
the forces on the object and the displacement of the object. (S.P. 2.2)

« 4.C.1.1 The student is able to calculate the total energy of a system and justify the mathematical routines used in the
calculation of component types of energy within the system whose sum is the total energy. (S.P. 1.4, 2.1, 2.2)

e 4.C.2.1 The student is able to make predictions about the changes in the mechanical energy of a system when a
component of an external force acts parallel or antiparallel to the direction of the displacement of the center of mass.
(S.P.6.4)

« 4.C.2.2 The student is able to apply the concepts of conservation of energy and the work-energy theorem to determine
qualitatively and/or quantitatively that work done on a two-object system in linear motion will change the kinetic energy
of the center of mass of the system, the potential energy of the systems, and/or the internal energy of the system. (S.P.
14,2.2,7.2)

» 5.B.5.3 The student is able to predict and calculate from graphical data the energy transfer to or work done on an
object or system from information about a force exerted on the object or system through a distance. (S.P. 1.5, 2.2, 6.4)

Work Transfers Energy

What happens to the work done on a system? Energy is transferred into the system, but in what form? Does it remain in the
system or move on? The answers depend on the situation. For example, if the lawn mower in Figure 7.2(a) is pushed just hard
enough to keep it going at a constant speed, then energy put into the mower by the person is removed continuously by friction,
and eventually leaves the system in the form of heat transfer. In contrast, work done on the briefcase by the person carrying it up
stairs in Figure 7.2(d) is stored in the briefcase-Earth system and can be recovered at any time, as shown in Figure 7.2(e). In
fact, the building of the pyramids in ancient Egypt is an example of storing energy in a system by doing work on the system.
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Some of the energy imparted to the stone blocks in lifting them during construction of the pyramids remains in the stone-Earth
system and has the potential to do work.

In this section we begin the study of various types of work and forms of energy. We will find that some types of work leave the
energy of a system constant, for example, whereas others change the system in some way, such as making it move. We will also
develop definitions of important forms of energy, such as the energy of motion.

Net Work and the Work-Energy Theorem

We know from the study of Newton'’s laws in Dynamics: Force and Newton's Laws of Motion that net force causes
acceleration. We will see in this section that work done by the net force gives a system energy of motion, and in the process we
will also find an expression for the energy of motion.

Let us start by considering the total, or net, work done on a system. Net work is defined to be the sum of work done by all
external forces—that is, net work is the work done by the net external force F . In equation form, this is

Wiet = Fretd cos @ where 0 is the angle between the force vector and the displacement vector.

Figure 7.3(a) shows a graph of force versus displacement for the component of the force in the direction of the
displacement—that is, an F cos @ vs. d graph. In this case, F cos @ is constant. You can see that the area under the graph is

Fd cos 0, or the work done. Figure 7.3(b) shows a more general process where the force varies. The area under the curve is
divided into strips, each having an average force (F cos 0) i(ave)

total work done is the sum of the W;. Thus the total work done is the total area under the curve, a useful property to which we

. The work done is (F cos 6)i(ave)di for each strip, and the

shall refer later.

Fcos 6
PG G s ': * Area = Fcos® x d
i = Fdcos @
= work=W
——— a
(a)
W = LW, = total area
Fcos 6 | under curve

W, = (FcoS 0);ayed;

1

d
(b)

Figure 7.3 (a) A graph of F cos @ vs. d,when F cos @ is constant. The area under the curve represents the work done by the force. (b) A

graph of F' cos 6 vs. d in which the force varies. The work done for each interval is the area of each strip; thus, the total area under the curve
equals the total work done.

Real World Connections: Work and Direction

Consider driving in a car. While moving, you have forward velocity and therefore kinetic energy. When you hit the brakes,
they exert a force opposite to your direction of motion (acting through the wheels). The brakes do work on your car and
reduce the kinetic energy. Similarly, when you accelerate, the engine (acting through the wheels) exerts a force in the
direction of motion. The engine does work on your car, and increases the kinetic energy. Finally, if you go around a corner at
a constant speed, you have the same kinetic energy both before and after the corner. The force exerted by the engine was
perpendicular to the direction of motion, and therefore did no work and did not change the kinetic energy.

Net work will be simpler to examine if we consider a one-dimensional situation where a force is used to accelerate an object in a
direction parallel to its initial velocity. Such a situation occurs for the package on the roller belt conveyor system shown in Figure
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7.4.

Fipp =120 N (=S ¢ - 5.00 N

 J

d=0.800 m

w N

Figure 7.4 A package on a roller belt is pushed horizontally through a distance d.

The force of gravity and the normal force acting on the package are perpendicular to the displacement and do no work.
Moreover, they are also equal in magnitude and opposite in direction so they cancel in calculating the net force. The net force

arises solely from the horizontal applied force Fapp and the horizontal friction force f. Thus, as expected, the net force is
parallel to the displacement, so that # = 0° and cos @ = 1, and the net work is given by
Whet = Fred. (7.7)

The effect of the net force F . is to accelerate the package from vy to v. The kinetic energy of the package increases,

indicating that the net work done on the system is positive. (See Example 7.2.) By using Newton’s second law, and doing some
algebra, we can reach an interesting conclusion. Substituting F',o; = ma from Newton’s second law gives

Whet = mad. (7.8)

To get a relationship between net work and the speed given to a system by the net force acting on it, we take d = x — x(; and
use the equation studied in Motion Equations for Constant Acceleration in One Dimension for the change in speed over a

distance d if the acceleration has the constant value a ; namely, v2 = v02 + 2ad (note that a appears in the expression for

2 2

vi—v
the net work). Solving for acceleration gives a = TO When a is substituted into the preceding expression for W ., we
obtain

v2—v,? (7.9)

Wnet =m T .
The d cancels, and we rearrange this to obtain

w=Lm? - Ly 2. (7.10)

2 2770

This expression is called the work-energy theorem, and it actually applies in general (even for forces that vary in direction and
magnitude), although we have derived it for the special case of a constant force parallel to the displacement. The theorem
1

implies that the net work on a system equals the change in the quantity —mv2 . This quantity is our first example of a form of

2
energy.

The Work-Energy Theorem

The net work on a system equals the change in the quantity %mv2 .
1,2 1 2 7.11
W et = VT = Smv (7.11)
The quantity %mv2 in the work-energy theorem is defined to be the translational kinetic energy (KE) of a mass m moving at a

speed Vv . (Translational kinetic energy is distinct from rotational kinetic energy, which is considered later.) In equation form, the

translational kinetic energy,
KE = %mvz, (7.12)

is the energy associated with translational motion. Kinetic energy is a form of energy associated with the motion of a particle,
single body, or system of objects moving together.
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We are aware that it takes energy to get an object, like a car or the package in Figure 7.4, up to speed, but it may be a bit
surprising that kinetic energy is proportional to speed squared. This proportionality means, for example, that a car traveling at
100 km/h has four times the kinetic energy it has at 50 km/h, helping to explain why high-speed collisions are so devastating. We
will now consider a series of examples to illustrate various aspects of work and energy.

Applying the Science Practices: Cars on a Hill

Assemble a ramp suitable for rolling some toy cars up or down. Then plan a series of experiments to determine how the
direction of a force relative to the velocity of an object alters the kinetic energy of the object. Note that gravity will be pointing
down in all cases. What happens if you start the car at the top? How about at the bottom, with an initial velocity that is
increasing? If your ramp is wide enough, what happens if you send the toy car straight across? Does varying the surface of
the ramp change your results?

Sample Response: When the toy car is going down the ramp, with a component of gravity in the same direction, the kinetic
energy increases. Sending the car up the ramp decreases the kinetic energy, as gravity is opposing the motion. Sending the
car sideways should result in little to no change. If you have a surface that generates more friction than a smooth surface
(carpet), note that the friction always opposed the motion, and hence decreases the kinetic energy.

Example 7.2 Calculating the Kinetic Energy of a Package

Suppose a 30.0-kg package on the roller belt conveyor system in Figure 7.4 is moving at 0.500 m/s. What is its kinetic
energy?

Strategy
Because the mass m and speed v are given, the kinetic energy can be calculated from its definition as given in the
equation KE = %mv2 .

Solution
The kinetic energy is given by

KE = 1my2. (7.13)
2
Entering known values gives
KE = 0.5(30.0 kg)(0.500 m/s)?, (7.14)
which yields
KE = 3.75 kg - m%/s> =3.75J. (7.15)
Discussion

Note that the unit of kinetic energy is the joule, the same as the unit of work, as mentioned when work was first defined. It is
also interesting that, although this is a fairly massive package, its kinetic energy is not large at this relatively low speed. This
fact is consistent with the observation that people can move packages like this without exhausting themselves.

Real World Connections: Center of Mass

Suppose we have two experimental carts, of equal mass, latched together on a track with a compressed spring between
them. When the latch is released, the spring does 10 J of work on the carts (we’ll see how in a couple of sections). The carts
move relative to the spring, which is the center of mass of the system. However, the center of mass stays fixed. How can we
consider the kinetic energy of this system?

By the work-energy theorem, the work done by the spring on the carts must turn into kinetic energy. So this system has 10 J
of kinetic energy. The total kinetic energy of the system is the kinetic energy of the center of mass of the system relative to
the fixed origin plus the kinetic energy of each cart relative to the center of mass. We know that the center of mass relative to
the fixed origin does not move, and therefore all of the kinetic energy must be distributed among the carts relative to the
center of mass. Since the carts have equal mass, they each receive an equal amount of kinetic energy, so each cart has 5.0
J of kinetic energy.

In our example, the forces between the spring and each cart are internal to the system. According to Newton’s third law,
these internal forces will cancel since they are equal and opposite in direction. However, this does not imply that these
internal forces will not do work. Thus, the change in kinetic energy of the system is caused by work done by the force of the
spring, and results in the motion of the two carts relative to the center of mass.

Example 7.3 Determining the Work to Accelerate a Package

Suppose that you push on the 30.0-kg package in Figure 7.4 with a constant force of 120 N through a distance of 0.800 m,
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and that the opposing friction force averages 5.00 N.

(a) Calculate the net work done on the package. (b) Solve the same problem as in part (a), this time by finding the work
done by each force that contributes to the net force.

Strategy and Concept for (a)

This is a motion in one dimension problem, because the downward force (from the weight of the package) and the normal
force have equal magnitude and opposite direction, so that they cancel in calculating the net force, while the applied force,
friction, and the displacement are all horizontal. (See Figure 7.4.) As expected, the net work is the net force times distance.

Solution for (a)

The net force is the push force minus friction, or Foi= 120 N —5.00 N = 115 N . Thus the net work is

Wiet = Fped = (115 N)(0.800 m) (7.16)
92.0N-m=92.01.

Discussion for (a)

This value is the net work done on the package. The person actually does more work than this, because friction opposes the
motion. Friction does negative work and removes some of the energy the person expends and converts it to thermal energy.
The net work equals the sum of the work done by each individual force.

Strategy and Concept for (b)

The forces acting on the package are gravity, the normal force, the force of friction, and the applied force. The normal force
and force of gravity are each perpendicular to the displacement, and therefore do no work.

Solution for (b)
The applied force does work.

Wapp = Fappd cos(0°) = Fyppd (7.17)
= (120 N)(0.800 m)
96.0J
The friction force and displacement are in opposite directions, so that & = 180°, and the work done by friction is
Wy = Fpd cos(180°) = —Fpd (7.18)
= —(5.00 N)(0.800 m)
—4.0017.
So the amounts of work done by gravity, by the normal force, by the applied force, and by friction are, respectively,
Wgr = 0, (7.19)
WN = 0,
Wapp = 96.01J,
Wi = —4.00J.

The total work done as the sum of the work done by each force is then seen to be
Wtotal = Wgr + WN + Wapp + Wfr = 920 J (720)

Discussion for (b)
The calculated total work Wi, ..; as the sum of the work by each force agrees, as expected, with the work W, done by

the net force. The work done by a collection of forces acting on an object can be calculated by either approach.

Example 7.4 Determining Speed from Work and Energy

Find the speed of the package in Figure 7.4 at the end of the push, using work and energy concepts.
Strategy
Here the work-energy theorem can be used, because we have just calculated the net work, W, and the initial kinetic

energy, lmvo2 . These calculations allow us to find the final kinetic energy, lmv2 , and thus the final speed v .

2 2

Solution

The work-energy theorem in equation form is
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7.21
Whet = %mVZ - %mvoz. ( )
Solving for %mv2 gives
%mv2 = Wiet + %mvoz. (7.22)
Thus,
Liny? = 920143751 =95.751. (7.23)

2

Solving for the final speed as requested and entering known values gives

(7.24)
_ 4[205751) _ /1915 kg - m?/s?
Vo= 2 _x 30.0 kg

2.53 m/s.

Discussion

Using work and energy, we not only arrive at an answer, we see that the final kinetic energy is the sum of the initial kinetic
energy and the net work done on the package. This means that the work indeed adds to the energy of the package.

Example 7.5 Work and Energy Can Reveal Distance, Too

How far does the package in Figure 7.4 coast after the push, assuming friction remains constant? Use work and energy
considerations.
Strategy

We know that once the person stops pushing, friction will bring the package to rest. In terms of energy, friction does negative
work until it has removed all of the package’s kinetic energy. The work done by friction is the force of friction times the
distance traveled times the cosine of the angle between the friction force and displacement; hence, this gives us a way of
finding the distance traveled after the person stops pushing.

Solution

The normal force and force of gravity cancel in calculating the net force. The horizontal friction force is then the net force,
and it acts opposite to the displacement, so § = 180°. To reduce the kinetic energy of the package to zero, the work Wi,

by friction must be minus the kinetic energy that the package started with plus what the package accumulated due to the
pushing. Thus Wy, = —95.75 J . Furthermore, Wy, = fd' cos @ =—fd’, where d’ is the distance it takes to stop. Thus,

=V _ _=95751 (7.25)
f 5.00N °’
and so
d'=192m. (7.26)
Discussion

This is a reasonable distance for a package to coast on a relatively friction-free conveyor system. Note that the work done
by friction is negative (the force is in the opposite direction of motion), so it removes the kinetic energy.

Some of the examples in this section can be solved without considering energy, but at the expense of missing out on gaining
insights about what work and energy are doing in this situation. On the whole, solutions involving energy are generally shorter
and easier than those using kinematics and dynamics alone.

7.3 Gravitational Potential Energy

Learning Objectives

By the end of this section, you will be able to:

» Explain gravitational potential energy in terms of work done against gravity.

» Show that the gravitational potential energy of an object of mass m at height h on Earth is given by PEg = mgh.

» Show how knowledge of potential energy as a function of position can be used to simplify calculations and explain
physical phenomena.
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The information presented in this section supports the following AP® learning objectives and science practices:

« 4.C.1.1 The student is able to calculate the total energy of a system and justify the mathematical routines used in the
calculation of component types of energy within the system whose sum is the total energy. (S.P. 1.4, 2.1, 2.2)

« 5.B.1.1 The student is able to set up a representation or model showing that a single object can only have kinetic
energy and use information about that object to calculate its kinetic energy. (S.P. 1.4, 2.2)

« 5.B.1.2 The student is able to translate between a representation of a single object, which can only have kinetic energy,
and a system that includes the object, which may have both kinetic and potential energies. (S.P. 1.5)

Work Done Against Gravity

Climbing stairs and lifting objects is work in both the scientific and everyday sense—it is work done against the gravitational
force. When there is work, there is a transformation of energy. The work done against the gravitational force goes into an
important form of stored energy that we will explore in this section.

Let us calculate the work done in liting an object of mass m through a height &, such as in Figure 7.5. If the object is lifted
straight up at constant speed, then the force needed to lift it is equal to its weight mg . The work done on the mass is then

W = Fd = mgh . We define this to be the gravitational potential energy (PEg) putinto (or gained by) the object-Earth

system. This energy is associated with the state of separation between two objects that attract each other by the gravitational
force. For convenience, we refer to this as the PEg gained by the object, recognizing that this is energy stored in the

gravitational field of Earth. Why do we use the word “system”? Potential energy is a property of a system rather than of a single
object—due to its physical position. An object’s gravitational potential is due to its position relative to the surroundings within the
Earth-object system. The force applied to the object is an external force, from outside the system. When it does positive work it
increases the gravitational potential energy of the system. Because gravitational potential energy depends on relative position,
we need a reference level at which to set the potential energy equal to 0. We usually choose this point to be Earth’s surface, but
this point is arbitrary; what is important is the difference in gravitational potential energy, because this difference is what relates to
the work done. The difference in gravitational potential energy of an object (in the Earth-object system) between two rungs of a
ladder will be the same for the first two rungs as for the last two rungs.

Converting Between Potential Energy and Kinetic Energy

Gravitational potential energy may be converted to other forms of energy, such as kinetic energy. If we release the mass,
gravitational force will do an amount of work equal to mgh on it, thereby increasing its kinetic energy by that same amount (by

the work-energy theorem). We will find it more useful to consider just the conversion of PE; to KE without explicitly

considering the intermediate step of work. (See Example 7.7.) This shortcut makes it is easier to solve problems using energy (if
possible) rather than explicitly using forces.
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Figure 7.5 (a) The work done to lift the weight is stored in the mass-Earth system as gravitational potential energy. (b) As the weight moves downward,
this gravitational potential energy is transferred to the cuckoo clock.

More precisely, we define the change in gravitational potential energy APEg to be
APEg = mgh, (7.27)

where, for simplicity, we denote the change in height by /4 rather than the usual A/ . Note that % is positive when the final

height is greater than the initial height, and vice versa. For example, if a 0.500-kg mass hung from a cuckoo clock is raised 1.00
m, then its change in gravitational potential energy is

(0.500 kg)(9.80 m/s*)(1.00 m) (7.28)

mgh
= 490kg-m%s>=4.901.

Note that the units of gravitational potential energy turn out to be joules, the same as for work and other forms of energy. As the
clock runs, the mass is lowered. We can think of the mass as gradually giving up its 4.90 J of gravitational potential energy,
without directly considering the force of gravity that does the work.

Using Potential Energy to Simplify 